{"title":"On Compact Packings of Euclidean Space with Spheres of Finitely Many Sizes","authors":"Miek Messerschmidt, Eder Kikianty","doi":"10.1007/s00454-024-00628-y","DOIUrl":null,"url":null,"abstract":"<p>For <span>\\(d\\in {\\mathbb {N}}\\)</span>, a compact sphere packing of Euclidean space <span>\\({\\mathbb {R}}^{d}\\)</span> is a set of spheres in <span>\\({\\mathbb {R}}^{d}\\)</span> with disjoint interiors so that the contact hypergraph of the packing is the vertex scheme of a homogeneous simplicial <i>d</i>-complex that covers all of <span>\\({\\mathbb {R}}^{d}\\)</span>. We are motivated by the question: For <span>\\(d,n\\in {\\mathbb {N}}\\)</span> with <span>\\(d,n\\ge 2\\)</span>, how many configurations of numbers <span>\\(0<r_{0}<r_{1}<\\cdots <r_{n-1}=1\\)</span> can occur as the radii of spheres in a compact sphere packing of <span>\\({\\mathbb {R}}^{d}\\)</span> wherein there occur exactly <i>n</i> sizes of sphere? We introduce what we call ‘heteroperturbative sets’ of labeled triangulations of unit spheres and we discuss the existence of non-trivial examples of heteroperturbative sets. For a fixed heteroperturbative set, we discuss how a compact sphere packing may be associated to the heteroperturbative set or not. We proceed to show, for <span>\\(d,n\\in {\\mathbb {N}}\\)</span> with <span>\\(d,n\\ge 2\\)</span> and for a fixed heteroperturbative set, that the collection of all configurations of <i>n</i> distinct positive numbers that can occur as the radii of spheres in a compact packing is finite, when taken over all compact sphere packings of <span>\\({\\mathbb {R}}^{d}\\)</span> which have exactly <i>n</i> sizes of sphere and which are associated to the fixed heteroperturbative set.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"38 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00628-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
For \(d\in {\mathbb {N}}\), a compact sphere packing of Euclidean space \({\mathbb {R}}^{d}\) is a set of spheres in \({\mathbb {R}}^{d}\) with disjoint interiors so that the contact hypergraph of the packing is the vertex scheme of a homogeneous simplicial d-complex that covers all of \({\mathbb {R}}^{d}\). We are motivated by the question: For \(d,n\in {\mathbb {N}}\) with \(d,n\ge 2\), how many configurations of numbers \(0<r_{0}<r_{1}<\cdots <r_{n-1}=1\) can occur as the radii of spheres in a compact sphere packing of \({\mathbb {R}}^{d}\) wherein there occur exactly n sizes of sphere? We introduce what we call ‘heteroperturbative sets’ of labeled triangulations of unit spheres and we discuss the existence of non-trivial examples of heteroperturbative sets. For a fixed heteroperturbative set, we discuss how a compact sphere packing may be associated to the heteroperturbative set or not. We proceed to show, for \(d,n\in {\mathbb {N}}\) with \(d,n\ge 2\) and for a fixed heteroperturbative set, that the collection of all configurations of n distinct positive numbers that can occur as the radii of spheres in a compact packing is finite, when taken over all compact sphere packings of \({\mathbb {R}}^{d}\) which have exactly n sizes of sphere and which are associated to the fixed heteroperturbative set.
期刊介绍:
Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.