Chong Chen, Chang Lu, Guangqing Xia, Maolin Chen, Bin Sun
{"title":"A sharp immersed method for electrohydrodynamic flows accompanied by charge evaporation","authors":"Chong Chen, Chang Lu, Guangqing Xia, Maolin Chen, Bin Sun","doi":"10.1002/fld.5269","DOIUrl":null,"url":null,"abstract":"<p>This article presents a sharp immersed method for simulating electrohydrodynamic (EHD) flows that involve charge evaporation. This well-known multi-scale, multi-physics problem is widely used in various fields, including industry and medicine. The method adopts a fully sharp model, where surface tension and Maxwell stress are treated as surface forces and free charges are concentrated on the zero thickness liquid-vacuum interface. Incorporating charge evaporation imposes strict restrictions on the time-step, as the rate of evaporation sharply increases with surface evolution. To overcome this challenge, an iterative algorithm that couples the electric field and surface charge density is proposed to obtain accurate results, even with significantly large time-steps. To mitigate the numerical residuals near the interface, which may introduce parasitic flows and cause numerical instability, an immersed interface method-based iterative projection method for the Navier–Stokes equations is proposed, in which a traction boundary condition involving multiple surface forces is imposed on the sharp interface. Numerical experiments were carried out, and the results show that the method is splitting-error-free and stable. The sharp immersed method is applied to simulate the electric-induced deformation of an ionic liquid drop with charge evaporation. The results indicate that charge evaporation can suppress the sharp development of Taylor cones at the ends of the drops. These findings have significant implications for the design and optimization of EHD systems in various applications.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 5","pages":"766-788"},"PeriodicalIF":1.7000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Fluids","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fld.5269","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This article presents a sharp immersed method for simulating electrohydrodynamic (EHD) flows that involve charge evaporation. This well-known multi-scale, multi-physics problem is widely used in various fields, including industry and medicine. The method adopts a fully sharp model, where surface tension and Maxwell stress are treated as surface forces and free charges are concentrated on the zero thickness liquid-vacuum interface. Incorporating charge evaporation imposes strict restrictions on the time-step, as the rate of evaporation sharply increases with surface evolution. To overcome this challenge, an iterative algorithm that couples the electric field and surface charge density is proposed to obtain accurate results, even with significantly large time-steps. To mitigate the numerical residuals near the interface, which may introduce parasitic flows and cause numerical instability, an immersed interface method-based iterative projection method for the Navier–Stokes equations is proposed, in which a traction boundary condition involving multiple surface forces is imposed on the sharp interface. Numerical experiments were carried out, and the results show that the method is splitting-error-free and stable. The sharp immersed method is applied to simulate the electric-induced deformation of an ionic liquid drop with charge evaporation. The results indicate that charge evaporation can suppress the sharp development of Taylor cones at the ends of the drops. These findings have significant implications for the design and optimization of EHD systems in various applications.
期刊介绍:
The International Journal for Numerical Methods in Fluids publishes refereed papers describing significant developments in computational methods that are applicable to scientific and engineering problems in fluid mechanics, fluid dynamics, micro and bio fluidics, and fluid-structure interaction. Numerical methods for solving ancillary equations, such as transport and advection and diffusion, are also relevant. The Editors encourage contributions in the areas of multi-physics, multi-disciplinary and multi-scale problems involving fluid subsystems, verification and validation, uncertainty quantification, and model reduction.
Numerical examples that illustrate the described methods or their accuracy are in general expected. Discussions of papers already in print are also considered. However, papers dealing strictly with applications of existing methods or dealing with areas of research that are not deemed to be cutting edge by the Editors will not be considered for review.
The journal publishes full-length papers, which should normally be less than 25 journal pages in length. Two-part papers are discouraged unless considered necessary by the Editors.