{"title":"An Interpretable Trend Analysis Neural Networks for Longitudinal Data Analysis","authors":"Zhenjie Yao, Yixin Chen, Jinwei Wang, Junjuan Li, Shuohua Chen, Shouling Wu, Yanhui Tu, Ming-Hui Zhao, Luxia Zhang","doi":"10.1145/3648105","DOIUrl":null,"url":null,"abstract":"Cohort study is one of the most commonly used study methods in medical and public health researches, which result in longitudinal data. Conventional statistical models and machine learning methods are not capable of modeling the evolution trend of the variables in longitudinal data. In this paper, we propose a Trend Analysis Neural Networks (TANN), which models the evolution trend of the variables by adaptive feature learning. TANN was tested on dataset of Kaiuan research. The task was to predict occurrence of cardiovascular events within 2 and 5 years, with 3 repeated medical examinations during 2008 and 2013. For 2-year prediction, The AUC of the TANN is 0.7378, which is a significant improvement than that of conventional methods, while that of TRNS, RNN, DNN, GBDT, RF, and LR are 0.7222, 0.7034, 0.7054, 0.7136, 0.7160 and 0.7024, respectively. For 5-year prediction, TANN also shows improvement. The experimental results show that the proposed TANN achieves better prediction performance on cardiovascular events prediction than conventional models. Furthermore, by analyzing the weights of TANN, we could find out important trends of the indicators, which are ignored by conventional machine learning models. The trend discovery mechanism interprets the model well. TANN is an appropriate balance between high performance and interpretability.","PeriodicalId":72043,"journal":{"name":"ACM transactions on computing for healthcare","volume":"22 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM transactions on computing for healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3648105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Cohort study is one of the most commonly used study methods in medical and public health researches, which result in longitudinal data. Conventional statistical models and machine learning methods are not capable of modeling the evolution trend of the variables in longitudinal data. In this paper, we propose a Trend Analysis Neural Networks (TANN), which models the evolution trend of the variables by adaptive feature learning. TANN was tested on dataset of Kaiuan research. The task was to predict occurrence of cardiovascular events within 2 and 5 years, with 3 repeated medical examinations during 2008 and 2013. For 2-year prediction, The AUC of the TANN is 0.7378, which is a significant improvement than that of conventional methods, while that of TRNS, RNN, DNN, GBDT, RF, and LR are 0.7222, 0.7034, 0.7054, 0.7136, 0.7160 and 0.7024, respectively. For 5-year prediction, TANN also shows improvement. The experimental results show that the proposed TANN achieves better prediction performance on cardiovascular events prediction than conventional models. Furthermore, by analyzing the weights of TANN, we could find out important trends of the indicators, which are ignored by conventional machine learning models. The trend discovery mechanism interprets the model well. TANN is an appropriate balance between high performance and interpretability.