{"title":"MFEMDroid: A Novel Malware Detection Framework Using Combined Multitype Features and Ensemble Modeling","authors":"Wei Gu, Hongyan Xing, Tianhao Hou","doi":"10.1049/2024/2850804","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The continuous malicious attacks on Internet of Things devices pose a potential threat to the economic and private information security of end-users, especially on the dominant Android devices. Combining static analysis methods with deep Learning is a promising approach to defend against that. This kind of method has two limitations: the first is that the current single-permission mechanism is not insufficient to regulate interapplication resource acquisition; another problem is that current work on feature learning is dedicated to modifying a single network structure, which may result in a suboptimal solution. In this study, to solve the abovementioned problems, we propose a novel malware detection framework MFEMDroid, which combines multitype features analysis and ensemble modeling. The Provider feature, facilitating information requests between applications (apps) and serving as an indispensable data storage method, plays a vital role in characterizing app behavior. Hence, we extract permissions and Provider features to comprehensively characterize app behavior and probe potentially dangerous combinations between or within these features. To address oversparse datasets and reduce feature learning overhead, we employ an auto-encoder for feature dimensionality reduction. Furthermore, we design an ensemble network based on SENet, ResNet, and the evolutionary convolutional neural network Squeeze Excitation Residual Network (SEResNet) to explore the hidden associations between different types of features from multiple perspectives. We performed extensive experiments to evaluate its method performance on real-world samples. The evaluation results demonstrate that the proposed framework can detect malware with an accuracy of 95.38%, which is much better than state-of-the-art solutions. These promising experimental results show that MFEMDroid is an effective approach to detect Android malware.</p>\n </div>","PeriodicalId":50380,"journal":{"name":"IET Information Security","volume":"2024 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/2850804","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Information Security","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/2850804","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The continuous malicious attacks on Internet of Things devices pose a potential threat to the economic and private information security of end-users, especially on the dominant Android devices. Combining static analysis methods with deep Learning is a promising approach to defend against that. This kind of method has two limitations: the first is that the current single-permission mechanism is not insufficient to regulate interapplication resource acquisition; another problem is that current work on feature learning is dedicated to modifying a single network structure, which may result in a suboptimal solution. In this study, to solve the abovementioned problems, we propose a novel malware detection framework MFEMDroid, which combines multitype features analysis and ensemble modeling. The Provider feature, facilitating information requests between applications (apps) and serving as an indispensable data storage method, plays a vital role in characterizing app behavior. Hence, we extract permissions and Provider features to comprehensively characterize app behavior and probe potentially dangerous combinations between or within these features. To address oversparse datasets and reduce feature learning overhead, we employ an auto-encoder for feature dimensionality reduction. Furthermore, we design an ensemble network based on SENet, ResNet, and the evolutionary convolutional neural network Squeeze Excitation Residual Network (SEResNet) to explore the hidden associations between different types of features from multiple perspectives. We performed extensive experiments to evaluate its method performance on real-world samples. The evaluation results demonstrate that the proposed framework can detect malware with an accuracy of 95.38%, which is much better than state-of-the-art solutions. These promising experimental results show that MFEMDroid is an effective approach to detect Android malware.
期刊介绍:
IET Information Security publishes original research papers in the following areas of information security and cryptography. Submitting authors should specify clearly in their covering statement the area into which their paper falls.
Scope:
Access Control and Database Security
Ad-Hoc Network Aspects
Anonymity and E-Voting
Authentication
Block Ciphers and Hash Functions
Blockchain, Bitcoin (Technical aspects only)
Broadcast Encryption and Traitor Tracing
Combinatorial Aspects
Covert Channels and Information Flow
Critical Infrastructures
Cryptanalysis
Dependability
Digital Rights Management
Digital Signature Schemes
Digital Steganography
Economic Aspects of Information Security
Elliptic Curve Cryptography and Number Theory
Embedded Systems Aspects
Embedded Systems Security and Forensics
Financial Cryptography
Firewall Security
Formal Methods and Security Verification
Human Aspects
Information Warfare and Survivability
Intrusion Detection
Java and XML Security
Key Distribution
Key Management
Malware
Multi-Party Computation and Threshold Cryptography
Peer-to-peer Security
PKIs
Public-Key and Hybrid Encryption
Quantum Cryptography
Risks of using Computers
Robust Networks
Secret Sharing
Secure Electronic Commerce
Software Obfuscation
Stream Ciphers
Trust Models
Watermarking and Fingerprinting
Special Issues. Current Call for Papers:
Security on Mobile and IoT devices - https://digital-library.theiet.org/files/IET_IFS_SMID_CFP.pdf