LLMs as Bridges: Reformulating Grounded Multimodal Named Entity Recognition

ArXiv Pub Date : 2024-02-15 DOI:10.48550/arXiv.2402.09989
Jinyuan Li, Han Li, Di Sun, Jiahao Wang, Wenkun Zhang, Zan Wang, Gang Pan
{"title":"LLMs as Bridges: Reformulating Grounded Multimodal Named Entity Recognition","authors":"Jinyuan Li, Han Li, Di Sun, Jiahao Wang, Wenkun Zhang, Zan Wang, Gang Pan","doi":"10.48550/arXiv.2402.09989","DOIUrl":null,"url":null,"abstract":"Grounded Multimodal Named Entity Recognition (GMNER) is a nascent multimodal task that aims to identify named entities, entity types and their corresponding visual regions. GMNER task exhibits two challenging properties: 1) The weak correlation between image-text pairs in social media results in a significant portion of named entities being ungroundable. 2) There exists a distinction between coarse-grained referring expressions commonly used in similar tasks (e.g., phrase localization, referring expression comprehension) and fine-grained named entities. In this paper, we propose RiVEG, a unified framework that reformulates GMNER into a joint MNER-VE-VG task by leveraging large language models (LLMs) as a connecting bridge. This reformulation brings two benefits: 1) It maintains the optimal MNER performance and eliminates the need for employing object detection methods to pre-extract regional features, thereby naturally addressing two major limitations of existing GMNER methods. 2) The introduction of entity expansion expression and Visual Entailment (VE) Module unifies Visual Grounding (VG) and Entity Grounding (EG). It enables RiVEG to effortlessly inherit the Visual Entailment and Visual Grounding capabilities of any current or prospective multimodal pretraining models. Extensive experiments demonstrate that RiVEG outperforms state-of-the-art methods on the existing GMNER dataset and achieves absolute leads of 10.65%, 6.21%, and 8.83% in all three subtasks.","PeriodicalId":8425,"journal":{"name":"ArXiv","volume":"26 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2402.09989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Grounded Multimodal Named Entity Recognition (GMNER) is a nascent multimodal task that aims to identify named entities, entity types and their corresponding visual regions. GMNER task exhibits two challenging properties: 1) The weak correlation between image-text pairs in social media results in a significant portion of named entities being ungroundable. 2) There exists a distinction between coarse-grained referring expressions commonly used in similar tasks (e.g., phrase localization, referring expression comprehension) and fine-grained named entities. In this paper, we propose RiVEG, a unified framework that reformulates GMNER into a joint MNER-VE-VG task by leveraging large language models (LLMs) as a connecting bridge. This reformulation brings two benefits: 1) It maintains the optimal MNER performance and eliminates the need for employing object detection methods to pre-extract regional features, thereby naturally addressing two major limitations of existing GMNER methods. 2) The introduction of entity expansion expression and Visual Entailment (VE) Module unifies Visual Grounding (VG) and Entity Grounding (EG). It enables RiVEG to effortlessly inherit the Visual Entailment and Visual Grounding capabilities of any current or prospective multimodal pretraining models. Extensive experiments demonstrate that RiVEG outperforms state-of-the-art methods on the existing GMNER dataset and achieves absolute leads of 10.65%, 6.21%, and 8.83% in all three subtasks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LLMs as Bridges:重构基础多模态命名实体识别
基础多模态命名实体识别(GMNER)是一项新兴的多模态任务,旨在识别命名实体、实体类型及其相应的视觉区域。GMNER 任务有两个具有挑战性的特性:1) 社交媒体中图像-文本对之间的相关性很弱,这导致相当一部分命名实体是不成立的。2) 类似任务中常用的粗粒度指代表达(如短语定位、指代表达理解)与细粒度命名实体之间存在区别。在本文中,我们提出了 RiVEG 这一统一框架,通过利用大型语言模型(LLM)作为连接桥梁,将 GMNER 重新表述为 MNER-VE-VG 联合任务。这种重构带来了两个好处:1) 它保持了最佳的 MNER 性能,并且无需使用对象检测方法来预先提取区域特征,从而自然而然地解决了现有 GMNER 方法的两大局限性。2) 引入实体扩展表达式和 Visual Entailment(VE)模块,将视觉接地(VG)和实体接地(EG)统一起来。它使 RiVEG 能够毫不费力地继承任何当前或未来多模态预训练模型的 Visual Entailment 和 Visual Grounding 功能。广泛的实验证明,在现有的 GMNER 数据集上,RiVEG 的表现优于最先进的方法,并在所有三个子任务中分别取得了 10.65%、6.21% 和 8.83% 的绝对领先优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Brain Tumor Segmentation - Metastases (BraTS-METS) Challenge 2023: Brain Metastasis Segmentation on Pre-treatment MRI. Image Statistics Predict the Sensitivity of Perceptual Quality Metrics. The Brain Tumor Segmentation (BraTS) Challenge 2023: Brain MR Image Synthesis for Tumor Segmentation (BraSyn). Matching Patients to Clinical Trials with Large Language Models. Epithelial layer fluidization by curvature-induced unjamming.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1