Social Reward: Evaluating and Enhancing Generative AI through Million-User Feedback from an Online Creative Community

ArXiv Pub Date : 2024-02-15 DOI:10.48550/arXiv.2402.09872
Arman Isajanyan, Artur Shatveryan, David Kocharyan, Zhangyang Wang, Humphrey Shi
{"title":"Social Reward: Evaluating and Enhancing Generative AI through Million-User Feedback from an Online Creative Community","authors":"Arman Isajanyan, Artur Shatveryan, David Kocharyan, Zhangyang Wang, Humphrey Shi","doi":"10.48550/arXiv.2402.09872","DOIUrl":null,"url":null,"abstract":"Social reward as a form of community recognition provides a strong source of motivation for users of online platforms to engage and contribute with content. The recent progress of text-conditioned image synthesis has ushered in a collaborative era where AI empowers users to craft original visual artworks seeking community validation. Nevertheless, assessing these models in the context of collective community preference introduces distinct challenges. Existing evaluation methods predominantly center on limited size user studies guided by image quality and prompt alignment. This work pioneers a paradigm shift, unveiling Social Reward - an innovative reward modeling framework that leverages implicit feedback from social network users engaged in creative editing of generated images. We embark on an extensive journey of dataset curation and refinement, drawing from Picsart: an online visual creation and editing platform, yielding a first million-user-scale dataset of implicit human preferences for user-generated visual art named Picsart Image-Social. Our analysis exposes the shortcomings of current metrics in modeling community creative preference of text-to-image models' outputs, compelling us to introduce a novel predictive model explicitly tailored to address these limitations. Rigorous quantitative experiments and user study show that our Social Reward model aligns better with social popularity than existing metrics. Furthermore, we utilize Social Reward to fine-tune text-to-image models, yielding images that are more favored by not only Social Reward, but also other established metrics. These findings highlight the relevance and effectiveness of Social Reward in assessing community appreciation for AI-generated artworks, establishing a closer alignment with users' creative goals: creating popular visual art. Codes can be accessed at https://github.com/Picsart-AI-Research/Social-Reward","PeriodicalId":8425,"journal":{"name":"ArXiv","volume":"24 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2402.09872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Social reward as a form of community recognition provides a strong source of motivation for users of online platforms to engage and contribute with content. The recent progress of text-conditioned image synthesis has ushered in a collaborative era where AI empowers users to craft original visual artworks seeking community validation. Nevertheless, assessing these models in the context of collective community preference introduces distinct challenges. Existing evaluation methods predominantly center on limited size user studies guided by image quality and prompt alignment. This work pioneers a paradigm shift, unveiling Social Reward - an innovative reward modeling framework that leverages implicit feedback from social network users engaged in creative editing of generated images. We embark on an extensive journey of dataset curation and refinement, drawing from Picsart: an online visual creation and editing platform, yielding a first million-user-scale dataset of implicit human preferences for user-generated visual art named Picsart Image-Social. Our analysis exposes the shortcomings of current metrics in modeling community creative preference of text-to-image models' outputs, compelling us to introduce a novel predictive model explicitly tailored to address these limitations. Rigorous quantitative experiments and user study show that our Social Reward model aligns better with social popularity than existing metrics. Furthermore, we utilize Social Reward to fine-tune text-to-image models, yielding images that are more favored by not only Social Reward, but also other established metrics. These findings highlight the relevance and effectiveness of Social Reward in assessing community appreciation for AI-generated artworks, establishing a closer alignment with users' creative goals: creating popular visual art. Codes can be accessed at https://github.com/Picsart-AI-Research/Social-Reward
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
社交奖励:通过来自在线创意社区的百万用户反馈评估和改进生成式人工智能
社交奖励作为一种社区认可形式,为网络平台用户参与和贡献内容提供了强大的动力。文本条件图像合成技术的最新进展开创了一个协作时代,人工智能赋予用户制作原创视觉艺术作品以寻求社区认可的能力。然而,在社区集体偏好的背景下评估这些模型带来了独特的挑战。现有的评估方法主要集中在以图像质量和提示对齐为指导的规模有限的用户研究上。这项工作开创了范式转变的先河,揭开了社交奖励的神秘面纱--这是一个创新的奖励建模框架,它利用了社交网络用户对生成图像进行创意编辑时的隐性反馈。我们从在线视觉创作和编辑平台 Picsart 出发,对数据集进行了广泛的整理和完善,首次建立了百万用户规模的数据集,其中包含了人类对用户生成的视觉艺术的隐性偏好,该数据集被命名为 Picsart Image-Social。我们的分析揭示了当前在对文本到图像模型输出的社区创意偏好进行建模时所使用的指标存在缺陷,这迫使我们引入了一个新的预测模型来明确解决这些局限性。严格的定量实验和用户研究表明,与现有指标相比,我们的 Social Reward 模型更符合社会流行度。此外,我们还利用 "社交奖赏 "对文本到图像的模型进行了微调,得出的图像不仅更受 "社交奖赏 "的青睐,也更受其他既定指标的青睐。这些发现凸显了 Social Reward 在评估社区对人工智能生成的艺术作品的赞赏方面的相关性和有效性,从而与用户的创作目标--创造受欢迎的视觉艺术--建立了更紧密的联系。代码可从以下网址获取:https://github.com/Picsart-AI-Research/Social-Reward
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Brain Tumor Segmentation - Metastases (BraTS-METS) Challenge 2023: Brain Metastasis Segmentation on Pre-treatment MRI. Image Statistics Predict the Sensitivity of Perceptual Quality Metrics. The Brain Tumor Segmentation (BraTS) Challenge 2023: Brain MR Image Synthesis for Tumor Segmentation (BraSyn). Matching Patients to Clinical Trials with Large Language Models. Epithelial layer fluidization by curvature-induced unjamming.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1