TOAD: Task-Oriented Automatic Dialogs with Diverse Response Styles

ArXiv Pub Date : 2024-02-15 DOI:10.48550/arXiv.2402.10137
Yinhong Liu, Yimai Fang, David Vandyke, Nigel Collier
{"title":"TOAD: Task-Oriented Automatic Dialogs with Diverse Response Styles","authors":"Yinhong Liu, Yimai Fang, David Vandyke, Nigel Collier","doi":"10.48550/arXiv.2402.10137","DOIUrl":null,"url":null,"abstract":"In light of recent advances in large language models (LLMs), the expectations for the next generation of virtual assistants include enhanced naturalness and adaptability across diverse usage scenarios. However, the creation of high-quality annotated data for Task-Oriented Dialog (TOD) is recognized to be slow and costly. To address these challenges, we introduce Task-Oriented Automatic Dialogs (TOAD), a novel and scalable TOD dataset along with its automatic generation pipeline. The TOAD dataset simulates realistic app context interaction and provide a variety of system response style options. Two aspects of system response styles are considered, verbosity level and users' expression mirroring. We benchmark TOAD on two response generation tasks and the results show that modelling more verbose or responses without user expression mirroring is more challenging.","PeriodicalId":8425,"journal":{"name":"ArXiv","volume":"16 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2402.10137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In light of recent advances in large language models (LLMs), the expectations for the next generation of virtual assistants include enhanced naturalness and adaptability across diverse usage scenarios. However, the creation of high-quality annotated data for Task-Oriented Dialog (TOD) is recognized to be slow and costly. To address these challenges, we introduce Task-Oriented Automatic Dialogs (TOAD), a novel and scalable TOD dataset along with its automatic generation pipeline. The TOAD dataset simulates realistic app context interaction and provide a variety of system response style options. Two aspects of system response styles are considered, verbosity level and users' expression mirroring. We benchmark TOAD on two response generation tasks and the results show that modelling more verbose or responses without user expression mirroring is more challenging.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TOAD:以任务为导向、响应风格多样的自动对话框
鉴于最近在大型语言模型(LLMs)方面取得的进展,人们对下一代虚拟助手的期望包括在各种使用场景中增强自然性和适应性。然而,为面向任务的对话(TOD)创建高质量的注释数据被认为是缓慢而昂贵的。为了应对这些挑战,我们推出了任务导向自动对话(TOAD)--一种新颖且可扩展的 TOD 数据集及其自动生成管道。TOAD 数据集模拟了真实的应用程序上下文交互,并提供了多种系统响应风格选项。我们考虑了系统响应风格的两个方面,即冗长程度和用户表达镜像。我们在两个响应生成任务中对 TOAD 进行了基准测试,结果表明,在没有用户表情镜像的情况下模拟更多的冗长响应或响应更具挑战性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Brain Tumor Segmentation - Metastases (BraTS-METS) Challenge 2023: Brain Metastasis Segmentation on Pre-treatment MRI. Image Statistics Predict the Sensitivity of Perceptual Quality Metrics. The Brain Tumor Segmentation (BraTS) Challenge 2023: Brain MR Image Synthesis for Tumor Segmentation (BraSyn). Matching Patients to Clinical Trials with Large Language Models. Epithelial layer fluidization by curvature-induced unjamming.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1