Exploring the Potential of Large Language Models in Artistic Creation: Collaboration and Reflection on Creative Programming

ArXiv Pub Date : 2024-02-15 DOI:10.48550/arXiv.2402.09750
Anqi Wang, Zhizhuo Yin, Yulu Hu, Yuanyuan Mao, Pan Hui
{"title":"Exploring the Potential of Large Language Models in Artistic Creation: Collaboration and Reflection on Creative Programming","authors":"Anqi Wang, Zhizhuo Yin, Yulu Hu, Yuanyuan Mao, Pan Hui","doi":"10.48550/arXiv.2402.09750","DOIUrl":null,"url":null,"abstract":"Recently, the potential of large language models (LLMs) has been widely used in assisting programming. However, current research does not explore the artist potential of LLMs in creative coding within artist and AI collaboration. Our work probes the reflection type of artists in the creation process with such collaboration. We compare two common collaboration approaches: invoking the entire program and multiple subtasks. Our findings exhibit artists' different stimulated reflections in two different methods. Our finding also shows the correlation of reflection type with user performance, user satisfaction, and subjective experience in two collaborations through conducting two methods, including experimental data and qualitative interviews. In this sense, our work reveals the artistic potential of LLM in creative coding. Meanwhile, we provide a critical lens of human-AI collaboration from the artists' perspective and expound design suggestions for future work of AI-assisted creative tasks.","PeriodicalId":8425,"journal":{"name":"ArXiv","volume":"11 21","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2402.09750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, the potential of large language models (LLMs) has been widely used in assisting programming. However, current research does not explore the artist potential of LLMs in creative coding within artist and AI collaboration. Our work probes the reflection type of artists in the creation process with such collaboration. We compare two common collaboration approaches: invoking the entire program and multiple subtasks. Our findings exhibit artists' different stimulated reflections in two different methods. Our finding also shows the correlation of reflection type with user performance, user satisfaction, and subjective experience in two collaborations through conducting two methods, including experimental data and qualitative interviews. In this sense, our work reveals the artistic potential of LLM in creative coding. Meanwhile, we provide a critical lens of human-AI collaboration from the artists' perspective and expound design suggestions for future work of AI-assisted creative tasks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索大型语言模型在艺术创作中的潜力:创意编程的合作与反思
最近,大型语言模型(LLM)的潜力已被广泛用于辅助编程。然而,目前的研究并没有探索 LLM 在艺术家与人工智能合作的创意编码中的艺术家潜力。我们的工作探究了艺术家在创作过程中对这种合作的反思类型。我们比较了两种常见的合作方式:调用整个程序和多个子任务。我们的研究结果表明,在两种不同的方法中,艺术家们的反思受到了不同的刺激。通过实验数据和定性访谈等两种方法,我们的研究结果还显示了在两种协作中,反思类型与用户表现、用户满意度和主观体验之间的相关性。从这个意义上说,我们的工作揭示了 LLM 在创意编码方面的艺术潜力。同时,我们还从艺术家的视角为人类与人工智能的合作提供了一个批判性视角,并为人工智能辅助创意任务的未来工作提出了设计建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Brain Tumor Segmentation - Metastases (BraTS-METS) Challenge 2023: Brain Metastasis Segmentation on Pre-treatment MRI. Image Statistics Predict the Sensitivity of Perceptual Quality Metrics. The Brain Tumor Segmentation (BraTS) Challenge 2023: Brain MR Image Synthesis for Tumor Segmentation (BraSyn). Matching Patients to Clinical Trials with Large Language Models. Epithelial layer fluidization by curvature-induced unjamming.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1