A Systematic Evaluation of Evolving Highly Nonlinear Boolean Functions in Odd Sizes

ArXiv Pub Date : 2024-02-15 DOI:10.48550/arXiv.2402.09937
C. Carlet, Marko Ðurasevic, D. Jakobović, S. Picek, L. Mariot
{"title":"A Systematic Evaluation of Evolving Highly Nonlinear Boolean Functions in Odd Sizes","authors":"C. Carlet, Marko Ðurasevic, D. Jakobović, S. Picek, L. Mariot","doi":"10.48550/arXiv.2402.09937","DOIUrl":null,"url":null,"abstract":"Boolean functions are mathematical objects used in diverse applications. Different applications also have different requirements, making the research on Boolean functions very active. In the last 30 years, evolutionary algorithms have been shown to be a strong option for evolving Boolean functions in different sizes and with different properties. Still, most of those works consider similar settings and provide results that are mostly interesting from the evolutionary algorithm's perspective. This work considers the problem of evolving highly nonlinear Boolean functions in odd sizes. While the problem formulation sounds simple, the problem is remarkably difficult, and the related work is extremely scarce. We consider three solutions encodings and four Boolean function sizes and run a detailed experimental analysis. Our results show that the problem is challenging, and finding optimal solutions is impossible except for the smallest tested size. However, once we added local search to the evolutionary algorithm, we managed to find a Boolean function in nine inputs with nonlinearity 241, which, to our knowledge, had never been accomplished before with evolutionary algorithms.","PeriodicalId":8425,"journal":{"name":"ArXiv","volume":"20 17","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2402.09937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Boolean functions are mathematical objects used in diverse applications. Different applications also have different requirements, making the research on Boolean functions very active. In the last 30 years, evolutionary algorithms have been shown to be a strong option for evolving Boolean functions in different sizes and with different properties. Still, most of those works consider similar settings and provide results that are mostly interesting from the evolutionary algorithm's perspective. This work considers the problem of evolving highly nonlinear Boolean functions in odd sizes. While the problem formulation sounds simple, the problem is remarkably difficult, and the related work is extremely scarce. We consider three solutions encodings and four Boolean function sizes and run a detailed experimental analysis. Our results show that the problem is challenging, and finding optimal solutions is impossible except for the smallest tested size. However, once we added local search to the evolutionary algorithm, we managed to find a Boolean function in nine inputs with nonlinearity 241, which, to our knowledge, had never been accomplished before with evolutionary algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对奇数大小高度非线性布尔函数进化的系统评估
布尔函数是用于各种应用的数学对象。不同的应用也有不同的要求,因此布尔函数的研究非常活跃。在过去的 30 年中,进化算法已被证明是进化不同大小和不同性质的布尔函数的有力选择。不过,这些研究大多考虑的是类似的设置,提供的结果大多是从进化算法的角度来看比较有趣的。这项工作考虑的是奇数大小的高度非线性布尔函数的进化问题。虽然问题的表述听起来很简单,但这个问题却非常困难,相关的工作也非常少。我们考虑了三种解决方案编码和四种布尔函数大小,并进行了详细的实验分析。我们的结果表明,这个问题极具挑战性,除了最小的测试规模外,找到最优解是不可能的。然而,一旦我们在进化算法中加入局部搜索,我们就能在九个输入中找到一个布尔函数,非线性241,据我们所知,这是进化算法从未实现过的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Brain Tumor Segmentation - Metastases (BraTS-METS) Challenge 2023: Brain Metastasis Segmentation on Pre-treatment MRI. Image Statistics Predict the Sensitivity of Perceptual Quality Metrics. The Brain Tumor Segmentation (BraTS) Challenge 2023: Brain MR Image Synthesis for Tumor Segmentation (BraSyn). Matching Patients to Clinical Trials with Large Language Models. Epithelial layer fluidization by curvature-induced unjamming.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1