Exploiting Alpha Transparency In Language And Vision-Based AI Systems

ArXiv Pub Date : 2024-02-15 DOI:10.48550/arXiv.2402.09671
David A. Noever, Forrest McKee
{"title":"Exploiting Alpha Transparency In Language And Vision-Based AI Systems","authors":"David A. Noever, Forrest McKee","doi":"10.48550/arXiv.2402.09671","DOIUrl":null,"url":null,"abstract":"This investigation reveals a novel exploit derived from PNG image file formats, specifically their alpha transparency layer, and its potential to fool multiple AI vision systems. Our method uses this alpha layer as a clandestine channel invisible to human observers but fully actionable by AI image processors. The scope tested for the vulnerability spans representative vision systems from Apple, Microsoft, Google, Salesforce, Nvidia, and Facebook, highlighting the attack's potential breadth. This vulnerability challenges the security protocols of existing and fielded vision systems, from medical imaging to autonomous driving technologies. Our experiments demonstrate that the affected systems, which rely on convolutional neural networks or the latest multimodal language models, cannot quickly mitigate these vulnerabilities through simple patches or updates. Instead, they require retraining and architectural changes, indicating a persistent hole in multimodal technologies without some future adversarial hardening against such vision-language exploits.","PeriodicalId":8425,"journal":{"name":"ArXiv","volume":"17 15","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2402.09671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This investigation reveals a novel exploit derived from PNG image file formats, specifically their alpha transparency layer, and its potential to fool multiple AI vision systems. Our method uses this alpha layer as a clandestine channel invisible to human observers but fully actionable by AI image processors. The scope tested for the vulnerability spans representative vision systems from Apple, Microsoft, Google, Salesforce, Nvidia, and Facebook, highlighting the attack's potential breadth. This vulnerability challenges the security protocols of existing and fielded vision systems, from medical imaging to autonomous driving technologies. Our experiments demonstrate that the affected systems, which rely on convolutional neural networks or the latest multimodal language models, cannot quickly mitigate these vulnerabilities through simple patches or updates. Instead, they require retraining and architectural changes, indicating a persistent hole in multimodal technologies without some future adversarial hardening against such vision-language exploits.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在基于语言和视觉的人工智能系统中利用阿尔法透明度
这项研究揭示了一种源自 PNG 图像文件格式(特别是其阿尔法透明层)的新型漏洞利用方法,及其欺骗多种人工智能视觉系统的潜力。我们的方法将阿尔法层用作人类观察者看不到、但人工智能图像处理器完全可以操作的秘密通道。该漏洞的测试范围涵盖苹果、微软、谷歌、Salesforce、Nvidia 和 Facebook 等公司的代表性视觉系统,凸显了攻击的潜在广度。从医疗成像到自动驾驶技术,该漏洞对现有和已投入使用的视觉系统的安全协议提出了挑战。我们的实验表明,依赖卷积神经网络或最新多模态语言模型的受影响系统无法通过简单的补丁或更新快速缓解这些漏洞。相反,它们需要重新训练和改变架构,这表明,如果未来不针对此类视觉语言漏洞进行对抗性加固,多模态技术中的漏洞将长期存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Brain Tumor Segmentation - Metastases (BraTS-METS) Challenge 2023: Brain Metastasis Segmentation on Pre-treatment MRI. Image Statistics Predict the Sensitivity of Perceptual Quality Metrics. The Brain Tumor Segmentation (BraTS) Challenge 2023: Brain MR Image Synthesis for Tumor Segmentation (BraSyn). Matching Patients to Clinical Trials with Large Language Models. Epithelial layer fluidization by curvature-induced unjamming.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1