Parameterized Algorithms for Steiner Forest in Bounded Width Graphs

ArXiv Pub Date : 2024-02-15 DOI:10.48550/arXiv.2402.09835
A. Feldmann, M. Lampis
{"title":"Parameterized Algorithms for Steiner Forest in Bounded Width Graphs","authors":"A. Feldmann, M. Lampis","doi":"10.48550/arXiv.2402.09835","DOIUrl":null,"url":null,"abstract":"In this paper we reassess the parameterized complexity and approximability of the well-studied Steiner Forest problem in several graph classes of bounded width. The problem takes an edge-weighted graph and pairs of vertices as input, and the aim is to find a minimum cost subgraph in which each given vertex pair lies in the same connected component. It is known that this problem is APX-hard in general, and NP-hard on graphs of treewidth 3, treedepth 4, and feedback vertex set size 2. However, Bateni, Hajiaghayi and Marx [JACM, 2011] gave an approximation scheme with a runtime of $n^{O(\\frac{k^2}{\\varepsilon})}$ on graphs of treewidth $k$. Our main result is a much faster efficient parameterized approximation scheme (EPAS) with a runtime of $2^{O(\\frac{k^2}{\\varepsilon} \\log \\frac{k^2}{\\varepsilon})} \\cdot n^{O(1)}$. If $k$ instead is the vertex cover number of the input graph, we show how to compute the optimum solution in $2^{O(k \\log k)} \\cdot n^{O(1)}$ time, and we also prove that this runtime dependence on $k$ is asymptotically best possible, under ETH. Furthermore, if $k$ is the size of a feedback edge set, then we obtain a faster $2^{O(k)} \\cdot n^{O(1)}$ time algorithm, which again cannot be improved under ETH.","PeriodicalId":8425,"journal":{"name":"ArXiv","volume":"12 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2402.09835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we reassess the parameterized complexity and approximability of the well-studied Steiner Forest problem in several graph classes of bounded width. The problem takes an edge-weighted graph and pairs of vertices as input, and the aim is to find a minimum cost subgraph in which each given vertex pair lies in the same connected component. It is known that this problem is APX-hard in general, and NP-hard on graphs of treewidth 3, treedepth 4, and feedback vertex set size 2. However, Bateni, Hajiaghayi and Marx [JACM, 2011] gave an approximation scheme with a runtime of $n^{O(\frac{k^2}{\varepsilon})}$ on graphs of treewidth $k$. Our main result is a much faster efficient parameterized approximation scheme (EPAS) with a runtime of $2^{O(\frac{k^2}{\varepsilon} \log \frac{k^2}{\varepsilon})} \cdot n^{O(1)}$. If $k$ instead is the vertex cover number of the input graph, we show how to compute the optimum solution in $2^{O(k \log k)} \cdot n^{O(1)}$ time, and we also prove that this runtime dependence on $k$ is asymptotically best possible, under ETH. Furthermore, if $k$ is the size of a feedback edge set, then we obtain a faster $2^{O(k)} \cdot n^{O(1)}$ time algorithm, which again cannot be improved under ETH.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有界宽度图中斯坦纳森林的参数化算法
在本文中,我们重新评估了在几种有界宽度的图类中被广泛研究的斯坦纳森林问题的参数化复杂性和近似性。该问题以一个边加权图和一对顶点为输入,目的是找到一个成本最小的子图,其中每个给定的顶点对都位于同一个连通分量中。众所周知,这个问题在一般情况下是 APX 难,在树宽为 3、树深为 4 和反馈顶点集大小为 2 的图上是 NP 难。然而,Bateni、Hajiaghayi 和 Marx [JACM, 2011]给出了一个近似方案,在树宽为 $k$ 的图上的运行时间为 $n^{O(\frac{k^2}{\varepsilon})}$。我们的主要成果是一种更快的高效参数化近似方案(EPAS),其运行时间为 $2^{O(\frac{k^2}{\varepsilon} \log \frac{k^2}{\varepsilon})}\cdot n^{O(1)}$.如果 $k$ 是输入图的顶点覆盖数,我们将展示如何在 2^{O(k \log k)} \cdot n^{O(1)}$ 时间内计算最优解,我们还将证明在 ETH 条件下,这种运行时间对 $k$ 的依赖性是渐近最佳的。此外,如果 $k$ 是反馈边集的大小,那么我们会得到一个更快的 $2^{O(k)} \cdot n^{O(1)}$ 时间算法,在 ETH 下同样无法改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Brain Tumor Segmentation - Metastases (BraTS-METS) Challenge 2023: Brain Metastasis Segmentation on Pre-treatment MRI. Image Statistics Predict the Sensitivity of Perceptual Quality Metrics. The Brain Tumor Segmentation (BraTS) Challenge 2023: Brain MR Image Synthesis for Tumor Segmentation (BraSyn). Matching Patients to Clinical Trials with Large Language Models. Epithelial layer fluidization by curvature-induced unjamming.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1