{"title":"TSTEM: A Cognitive Platform for Collecting Cyber Threat Intelligence in the Wild","authors":"Prasasthy Balasubramanian, Sadaf Nazari, Danial Khosh Kholgh, A. Mahmoodi, Justin Seby, Panos Kostakos","doi":"10.48550/arXiv.2402.09973","DOIUrl":null,"url":null,"abstract":"The extraction of cyber threat intelligence (CTI) from open sources is a rapidly expanding defensive strategy that enhances the resilience of both Information Technology (IT) and Operational Technology (OT) environments against large-scale cyber-attacks. While previous research has focused on improving individual components of the extraction process, the community lacks open-source platforms for deploying streaming CTI data pipelines in the wild. To address this gap, the study describes the implementation of an efficient and well-performing platform capable of processing compute-intensive data pipelines based on the cloud computing paradigm for real-time detection, collecting, and sharing CTI from different online sources. We developed a prototype platform (TSTEM), a containerized microservice architecture that uses Tweepy, Scrapy, Terraform, ELK, Kafka, and MLOps to autonomously search, extract, and index IOCs in the wild. Moreover, the provisioning, monitoring, and management of the TSTEM platform are achieved through infrastructure as a code (IaC). Custom focus crawlers collect web content, which is then processed by a first-level classifier to identify potential indicators of compromise (IOCs). If deemed relevant, the content advances to a second level of extraction for further examination. Throughout this process, state-of-the-art NLP models are utilized for classification and entity extraction, enhancing the overall IOC extraction methodology. Our experimental results indicate that these models exhibit high accuracy (exceeding 98%) in the classification and extraction tasks, achieving this performance within a time frame of less than a minute. The effectiveness of our system can be attributed to a finely-tuned IOC extraction method that operates at multiple stages, ensuring precise identification of relevant information with low false positives.","PeriodicalId":8425,"journal":{"name":"ArXiv","volume":"6 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2402.09973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The extraction of cyber threat intelligence (CTI) from open sources is a rapidly expanding defensive strategy that enhances the resilience of both Information Technology (IT) and Operational Technology (OT) environments against large-scale cyber-attacks. While previous research has focused on improving individual components of the extraction process, the community lacks open-source platforms for deploying streaming CTI data pipelines in the wild. To address this gap, the study describes the implementation of an efficient and well-performing platform capable of processing compute-intensive data pipelines based on the cloud computing paradigm for real-time detection, collecting, and sharing CTI from different online sources. We developed a prototype platform (TSTEM), a containerized microservice architecture that uses Tweepy, Scrapy, Terraform, ELK, Kafka, and MLOps to autonomously search, extract, and index IOCs in the wild. Moreover, the provisioning, monitoring, and management of the TSTEM platform are achieved through infrastructure as a code (IaC). Custom focus crawlers collect web content, which is then processed by a first-level classifier to identify potential indicators of compromise (IOCs). If deemed relevant, the content advances to a second level of extraction for further examination. Throughout this process, state-of-the-art NLP models are utilized for classification and entity extraction, enhancing the overall IOC extraction methodology. Our experimental results indicate that these models exhibit high accuracy (exceeding 98%) in the classification and extraction tasks, achieving this performance within a time frame of less than a minute. The effectiveness of our system can be attributed to a finely-tuned IOC extraction method that operates at multiple stages, ensuring precise identification of relevant information with low false positives.