Classification Diffusion Models

ArXiv Pub Date : 2024-02-15 DOI:10.48550/arXiv.2402.10095
Shahar Yadin, Noam Elata, T. Michaeli
{"title":"Classification Diffusion Models","authors":"Shahar Yadin, Noam Elata, T. Michaeli","doi":"10.48550/arXiv.2402.10095","DOIUrl":null,"url":null,"abstract":"A prominent family of methods for learning data distributions relies on density ratio estimation (DRE), where a model is trained to $\\textit{classify}$ between data samples and samples from some reference distribution. These techniques are successful in simple low-dimensional settings but fail to achieve good results on complex high-dimensional data, like images. A different family of methods for learning distributions is that of denoising diffusion models (DDMs), in which a model is trained to $\\textit{denoise}$ data samples. These approaches achieve state-of-the-art results in image, video, and audio generation. In this work, we present $\\textit{Classification Diffusion Models}$ (CDMs), a generative technique that adopts the denoising-based formalism of DDMs while making use of a classifier that predicts the amount of noise added to a clean signal, similarly to DRE methods. Our approach is based on the observation that an MSE-optimal denoiser for white Gaussian noise can be expressed in terms of the gradient of a cross-entropy-optimal classifier for predicting the noise level. As we illustrate, CDM achieves better denoising results compared to DDM, and leads to at least comparable FID in image generation. CDM is also capable of highly efficient one-step exact likelihood estimation, achieving state-of-the-art results among methods that use a single step. Code is available on the project's webpage in https://shaharYadin.github.io/CDM/ .","PeriodicalId":8425,"journal":{"name":"ArXiv","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2402.10095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A prominent family of methods for learning data distributions relies on density ratio estimation (DRE), where a model is trained to $\textit{classify}$ between data samples and samples from some reference distribution. These techniques are successful in simple low-dimensional settings but fail to achieve good results on complex high-dimensional data, like images. A different family of methods for learning distributions is that of denoising diffusion models (DDMs), in which a model is trained to $\textit{denoise}$ data samples. These approaches achieve state-of-the-art results in image, video, and audio generation. In this work, we present $\textit{Classification Diffusion Models}$ (CDMs), a generative technique that adopts the denoising-based formalism of DDMs while making use of a classifier that predicts the amount of noise added to a clean signal, similarly to DRE methods. Our approach is based on the observation that an MSE-optimal denoiser for white Gaussian noise can be expressed in terms of the gradient of a cross-entropy-optimal classifier for predicting the noise level. As we illustrate, CDM achieves better denoising results compared to DDM, and leads to at least comparable FID in image generation. CDM is also capable of highly efficient one-step exact likelihood estimation, achieving state-of-the-art results among methods that use a single step. Code is available on the project's webpage in https://shaharYadin.github.io/CDM/ .
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分类扩散模型
学习数据分布的一系列著名方法都依赖于密度比估计(DRE),即训练模型在数据样本和来自某种参考分布的样本之间进行 $\textit{classify}$。这些技术在简单的低维设置中取得了成功,但在复杂的高维数据(如图像)中却无法取得良好的效果。去噪扩散模型(Denoising diffusion models,DDMs)是学习分布的一个不同方法系列,其中一个模型被训练为 $\textit{denoise}$ 数据样本。这些方法在图像、视频和音频生成方面取得了最先进的成果。在这项工作中,我们提出了$\textit{分类扩散模型}$ (CDMs),这是一种生成技术,它采用了 DDMs 基于去噪的形式主义,同时利用分类器预测添加到干净信号中的噪声量,与 DRE 方法类似。我们的方法基于以下观察:白高斯噪声的 MSE 最佳去噪器可以用预测噪声水平的交叉熵最佳分类器的梯度来表示。正如我们所说明的,CDM 与 DDM 相比能获得更好的去噪效果,在生成图像时至少能达到相当的 FID。CDM 还能进行高效的单步精确似然估计,在使用单步估计的方法中取得了最先进的结果。代码可在该项目的网页 https://shaharYadin.github.io/CDM/ 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning temporal relationships between symbols with Laplace Neural Manifolds. Probabilistic Genotype-Phenotype Maps Reveal Mutational Robustness of RNA Folding, Spin Glasses, and Quantum Circuits. Reliability of energy landscape analysis of resting-state functional MRI data. The Dynamic Sensorium competition for predicting large-scale mouse visual cortex activity from videos. LinearAlifold: Linear-Time Consensus Structure Prediction for RNA Alignments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1