Two-Timescale Design for Active STAR-RIS Aided Massive MIMO Systems

ArXiv Pub Date : 2024-02-15 DOI:10.48550/arXiv.2402.09896
Anastasios K. Papazafeiropoulos, Hanxiao Ge, P. Kourtessis, T. Ratnarajah, S. Chatzinotas, S. Papavassiliou
{"title":"Two-Timescale Design for Active STAR-RIS Aided Massive MIMO Systems","authors":"Anastasios K. Papazafeiropoulos, Hanxiao Ge, P. Kourtessis, T. Ratnarajah, S. Chatzinotas, S. Papavassiliou","doi":"10.48550/arXiv.2402.09896","DOIUrl":null,"url":null,"abstract":"Simultaneously transmitting and reflecting \\textcolor{black}{reconfigurable intelligent surface} (STAR-RIS) is a promising implementation of RIS-assisted systems that enables full-space coverage. However, STAR-RIS as well as conventional RIS suffer from the double-fading effect. Thus, in this paper, we propose the marriage of active RIS and STAR-RIS, denoted as ASTARS for massive multiple-input multiple-output (mMIMO) systems, and we focus on the energy splitting (ES) and mode switching (MS) protocols. Compared to prior literature, we consider the impact of correlated fading, and we rely our analysis on the two timescale protocol, being dependent on statistical channel state information (CSI). On this ground, we propose a channel estimation method for ASTARS with reduced overhead that accounts for its architecture. Next, we derive a \\textcolor{black}{closed-form expression} for the achievable sum-rate for both types of users in the transmission and reflection regions in a unified approach with significant practical advantages such as reduced complexity and overhead, which result in a lower number of required iterations for convergence compared to an alternating optimization (AO) approach. Notably, we maximize simultaneously the amplitudes, the phase shifts, and the active amplifying coefficients of the ASTARS by applying the projected gradient ascent method (PGAM). Remarkably, the proposed optimization can be executed at every several coherence intervals that reduces the processing burden considerably. Simulations corroborate the analytical results, provide insight into the effects of fundamental variables on the sum achievable SE, and present the superiority of 16 ASTARS compared to passive STAR-RIS for a practical number of surface elements.","PeriodicalId":8425,"journal":{"name":"ArXiv","volume":"19 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2402.09896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Simultaneously transmitting and reflecting \textcolor{black}{reconfigurable intelligent surface} (STAR-RIS) is a promising implementation of RIS-assisted systems that enables full-space coverage. However, STAR-RIS as well as conventional RIS suffer from the double-fading effect. Thus, in this paper, we propose the marriage of active RIS and STAR-RIS, denoted as ASTARS for massive multiple-input multiple-output (mMIMO) systems, and we focus on the energy splitting (ES) and mode switching (MS) protocols. Compared to prior literature, we consider the impact of correlated fading, and we rely our analysis on the two timescale protocol, being dependent on statistical channel state information (CSI). On this ground, we propose a channel estimation method for ASTARS with reduced overhead that accounts for its architecture. Next, we derive a \textcolor{black}{closed-form expression} for the achievable sum-rate for both types of users in the transmission and reflection regions in a unified approach with significant practical advantages such as reduced complexity and overhead, which result in a lower number of required iterations for convergence compared to an alternating optimization (AO) approach. Notably, we maximize simultaneously the amplitudes, the phase shifts, and the active amplifying coefficients of the ASTARS by applying the projected gradient ascent method (PGAM). Remarkably, the proposed optimization can be executed at every several coherence intervals that reduces the processing burden considerably. Simulations corroborate the analytical results, provide insight into the effects of fundamental variables on the sum achievable SE, and present the superiority of 16 ASTARS compared to passive STAR-RIS for a practical number of surface elements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
主动式 STAR-RIS 辅助大规模多输入多输出系统的双时标设计
同时发射和反射(textcolor{black}{可重新配置的智能表面}(STAR-RIS)是 RIS 辅助系统的一种有前途的实现方式,它能实现全空间覆盖。然而,STAR-RIS 和传统的 RIS 都存在双衰减效应。因此,在本文中,我们提出了主动 RIS 与 STAR-RIS 的结合,并将其命名为 ASTARS,用于大规模多输入多输出(mMIMO)系统,重点关注能量分割(ES)和模式切换(MS)协议。与之前的文献相比,我们考虑了相关衰落的影响,并依赖于统计信道状态信息(CSI)对两个时标协议进行分析。在此基础上,我们提出了一种针对 ASTARS 的信道估计方法,该方法开销较小,且考虑到了 ASTARS 的架构。接下来,我们用一种统一的方法推导出了两类用户在传输和反射区域的可实现总速率(textcolor{black}{闭式表达式}),这种方法具有显著的实用优势,如降低了复杂性和开销,与交替优化(AO)方法相比,收敛所需的迭代次数更少。值得注意的是,通过应用投影梯度上升法(PGAM),我们同时最大化了 ASTARS 的振幅、相移和有源放大系数。值得注意的是,所提出的优化方法可以在每几个相干间隔内执行,从而大大减轻了处理负担。仿真证实了分析结果,深入分析了基本变量对可实现 SE 之和的影响,并展示了 16 ASTARS 与被动 STAR-RIS 相比,在实际表面元素数量上的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Brain Tumor Segmentation - Metastases (BraTS-METS) Challenge 2023: Brain Metastasis Segmentation on Pre-treatment MRI. Image Statistics Predict the Sensitivity of Perceptual Quality Metrics. The Brain Tumor Segmentation (BraTS) Challenge 2023: Brain MR Image Synthesis for Tumor Segmentation (BraSyn). Matching Patients to Clinical Trials with Large Language Models. Epithelial layer fluidization by curvature-induced unjamming.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1