How Much Does Each Datapoint Leak Your Privacy? Quantifying the Per-datum Membership Leakage

ArXiv Pub Date : 2024-02-15 DOI:10.48550/arXiv.2402.10065
Achraf Azize, Debabrota Basu
{"title":"How Much Does Each Datapoint Leak Your Privacy? Quantifying the Per-datum Membership Leakage","authors":"Achraf Azize, Debabrota Basu","doi":"10.48550/arXiv.2402.10065","DOIUrl":null,"url":null,"abstract":"We study the per-datum Membership Inference Attacks (MIAs), where an attacker aims to infer whether a fixed target datum has been included in the input dataset of an algorithm and thus, violates privacy. First, we define the membership leakage of a datum as the advantage of the optimal adversary targeting to identify it. Then, we quantify the per-datum membership leakage for the empirical mean, and show that it depends on the Mahalanobis distance between the target datum and the data-generating distribution. We further assess the effect of two privacy defences, i.e. adding Gaussian noise and sub-sampling. We quantify exactly how both of them decrease the per-datum membership leakage. Our analysis builds on a novel proof technique that combines an Edgeworth expansion of the likelihood ratio test and a Lindeberg-Feller central limit theorem. Our analysis connects the existing likelihood ratio and scalar product attacks, and also justifies different canary selection strategies used in the privacy auditing literature. Finally, our experiments demonstrate the impacts of the leakage score, the sub-sampling ratio and the noise scale on the per-datum membership leakage as indicated by the theory.","PeriodicalId":8425,"journal":{"name":"ArXiv","volume":"14 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2402.10065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the per-datum Membership Inference Attacks (MIAs), where an attacker aims to infer whether a fixed target datum has been included in the input dataset of an algorithm and thus, violates privacy. First, we define the membership leakage of a datum as the advantage of the optimal adversary targeting to identify it. Then, we quantify the per-datum membership leakage for the empirical mean, and show that it depends on the Mahalanobis distance between the target datum and the data-generating distribution. We further assess the effect of two privacy defences, i.e. adding Gaussian noise and sub-sampling. We quantify exactly how both of them decrease the per-datum membership leakage. Our analysis builds on a novel proof technique that combines an Edgeworth expansion of the likelihood ratio test and a Lindeberg-Feller central limit theorem. Our analysis connects the existing likelihood ratio and scalar product attacks, and also justifies different canary selection strategies used in the privacy auditing literature. Finally, our experiments demonstrate the impacts of the leakage score, the sub-sampling ratio and the noise scale on the per-datum membership leakage as indicated by the theory.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
每个数据点泄露了您多少隐私?量化每个数据点的成员信息泄露情况
我们研究的是每数据成员推断攻击(MIAs),攻击者的目的是推断算法的输入数据集中是否包含了固定的目标数据,从而侵犯隐私。首先,我们将一个数据的成员资格泄漏定义为识别该数据的最佳对手目标的优势。然后,我们量化了经验平均值的每个数据的成员资格泄漏,并证明它取决于目标数据与数据生成分布之间的马哈拉诺比距离。我们进一步评估了两种隐私保护措施的效果,即添加高斯噪声和子采样。我们准确量化了这两种方法是如何减少每个数据的成员泄漏的。我们的分析建立在一种新颖的证明技术之上,该技术结合了似然比检验的埃奇沃斯扩展和林德伯格-费勒中心极限定理。我们的分析将现有的似然比和标量乘积攻击联系起来,同时也证明了隐私审计文献中使用的不同金丝雀选择策略的合理性。最后,我们的实验证明了理论所指出的泄漏分数、子采样比和噪声尺度对每数据成员泄漏的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Brain Tumor Segmentation - Metastases (BraTS-METS) Challenge 2023: Brain Metastasis Segmentation on Pre-treatment MRI. Image Statistics Predict the Sensitivity of Perceptual Quality Metrics. The Brain Tumor Segmentation (BraTS) Challenge 2023: Brain MR Image Synthesis for Tumor Segmentation (BraSyn). Matching Patients to Clinical Trials with Large Language Models. Epithelial layer fluidization by curvature-induced unjamming.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1