Parametric Quantile Beta Regression Model

IF 1.7 3区 数学 Q1 STATISTICS & PROBABILITY International Statistical Review Pub Date : 2024-02-25 DOI:10.1111/insr.12564
Marcelo Bourguignon, Diego I. Gallardo, Helton Saulo
{"title":"Parametric Quantile Beta Regression Model","authors":"Marcelo Bourguignon,&nbsp;Diego I. Gallardo,&nbsp;Helton Saulo","doi":"10.1111/insr.12564","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this paper, we develop a fully parametric quantile regression model based on the generalised three-parameter beta (GB3) distribution. Beta regression models are primarily used to model rates and proportions. However, these models are usually specified in terms of a conditional mean. Therefore, they may be inadequate if the observed response variable follows an asymmetrical distribution. In addition, beta regression models do not consider the effect of the covariates across the spectrum of the dependent variable, which is possible through the conditional quantile approach. In order to introduce the proposed GB3 regression model, we first reparameterise the GB3 distribution by inserting a quantile parameter, and then we develop the new proposed quantile model. We also propose a simple interpretation of the predictor–response relationship in terms of percentage increases/decreases of the quantile. A Monte Carlo study is carried out for evaluating the performance of the maximum likelihood estimates and the choice of the link functions. Finally, a real COVID-19 dataset from Chile is analysed and discussed to illustrate the proposed approach.</p>\n </div>","PeriodicalId":14479,"journal":{"name":"International Statistical Review","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Statistical Review","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/insr.12564","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we develop a fully parametric quantile regression model based on the generalised three-parameter beta (GB3) distribution. Beta regression models are primarily used to model rates and proportions. However, these models are usually specified in terms of a conditional mean. Therefore, they may be inadequate if the observed response variable follows an asymmetrical distribution. In addition, beta regression models do not consider the effect of the covariates across the spectrum of the dependent variable, which is possible through the conditional quantile approach. In order to introduce the proposed GB3 regression model, we first reparameterise the GB3 distribution by inserting a quantile parameter, and then we develop the new proposed quantile model. We also propose a simple interpretation of the predictor–response relationship in terms of percentage increases/decreases of the quantile. A Monte Carlo study is carried out for evaluating the performance of the maximum likelihood estimates and the choice of the link functions. Finally, a real COVID-19 dataset from Chile is analysed and discussed to illustrate the proposed approach.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
参数量化贝塔回归模型
摘要本文基于广义三参数贝塔(GB3)分布,建立了一个全参数量化回归模型。贝塔回归模型主要用于建立比率和比例模型。然而,这些模型通常是根据条件平均值来指定的。因此,如果观测到的响应变量呈非对称分布,这些模型就可能不够理想。此外,贝塔回归模型没有考虑协变量在因变量频谱上的影响,而条件量级方法可以考虑这种影响。为了引入拟议的 GB3 回归模型,我们首先通过插入一个量化参数对 GB3 分布进行了重新参数化,然后建立了新的拟议量化模型。我们还提出了一个简单的预测因子-响应关系的解释,即量化值的增加/减少百分比。为评估最大似然估计的性能和链接函数的选择,我们进行了蒙特卡罗研究。最后,对来自智利的 COVID-19 真实数据集进行了分析和讨论,以说明所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Statistical Review
International Statistical Review 数学-统计学与概率论
CiteScore
4.30
自引率
5.00%
发文量
52
审稿时长
>12 weeks
期刊介绍: International Statistical Review is the flagship journal of the International Statistical Institute (ISI) and of its family of Associations. It publishes papers of broad and general interest in statistics and probability. The term Review is to be interpreted broadly. The types of papers that are suitable for publication include (but are not limited to) the following: reviews/surveys of significant developments in theory, methodology, statistical computing and graphics, statistical education, and application areas; tutorials on important topics; expository papers on emerging areas of research or application; papers describing new developments and/or challenges in relevant areas; papers addressing foundational issues; papers on the history of statistics and probability; white papers on topics of importance to the profession or society; and historical assessment of seminal papers in the field and their impact.
期刊最新文献
Issue Information Statistics: Multivariate Data Integration Using R; Methods and Applications With the mixOmics Package Kim-Anh Lê Cao, Zoe Marie WelhamChapman & Hall/CRC, 2021, xxi + 308 pages, £84.99/$115.00, hardcover ISBN: 978-1032128078 eBook ISBN: 9781003026860 Philosophies, Puzzles, and Paradoxes: A Statistician's Search for the Truth Yudi Pawitan and Youngjo LeeChapman & Hall/CRC, 2024, xiv + 351 pages, £18.39/$23.96 paperback, £104/$136 hardback, £17.24/$22.46 eBook ISBN: 9781032377391 paperback; 9781032377407 hardback; 9781003341659 ebook Machine Learning Theory and Applications: Hands-On Use Cases With Python on Classical and Quantum Machines, Xavier Vasques, John Wiley & Sons, 2024, xx + 487 pages, $89.95, hardcover ISBN: 978-1-394-22061-8 Object Oriented Data Analysis J. S. Marron and I. L. DrydenChapman & Hall/CRC, 2022, xii + 424 pages, softcover ISBN: 978-0-8153-9282-8 (hbk) ISBN: 978-1-032-11480-4 (pbk) ISBN: 978-1-351-18967-5 (ebk)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1