Clarissa Capko, Jason Thiessen, Lana Harach, Jessica L Fraser, Michelle T Franklin, Paul K Abram
{"title":"A method for sampling parasitized Drosophila suzukii (Diptera: Drosophilidae) puparia from soil","authors":"Clarissa Capko, Jason Thiessen, Lana Harach, Jessica L Fraser, Michelle T Franklin, Paul K Abram","doi":"10.1093/jisesa/ieae004","DOIUrl":null,"url":null,"abstract":"Methods to measure the diversity and biological control impact of parasitoids for the control of spotted-wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) are being developed in support of biological control programs around the world. Existing methods to determine parasitism levels and parasitoid species composition focus on sampling D. suzukii within fresh and rotting fruit. However, many D. suzukii pupate in the soil or in dropped fruit, where additional parasitism could occur and where their parasitoids are thought to overwinter. Here we introduce a method for extracting parasitized D. suzukii puparia from the soil through a sieve and flotation system, allowing for effective collection of puparia, from which parasitoids can then be reared. Although the method considerably underestimates the absolute number of puparia in soil samples, it nonetheless yields a high number of puparia relative to sampling effort and provides a robust estimate of the relative abundance of puparia among samples. Using this method, we confirmed that at least 5 species of parasitoids, including some that have rarely been detected in past studies, overwinter in their immature stages inside D. suzukii puparia in south coastal British Columbia, Canada. The ability to sample puparia from the soil will lead to a more comprehensive view of both D. suzukii and parasitoid abundance throughout the season, help confirm parasitoid establishment following intentional releases, and provide a way to measure the diversity of parasitoid species and potential interactions among parasitoids (e.g., hyper- or klepto-parasitism) that may often occur on the soil surface.","PeriodicalId":16156,"journal":{"name":"Journal of Insect Science","volume":"51 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Insect Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/jisesa/ieae004","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Methods to measure the diversity and biological control impact of parasitoids for the control of spotted-wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) are being developed in support of biological control programs around the world. Existing methods to determine parasitism levels and parasitoid species composition focus on sampling D. suzukii within fresh and rotting fruit. However, many D. suzukii pupate in the soil or in dropped fruit, where additional parasitism could occur and where their parasitoids are thought to overwinter. Here we introduce a method for extracting parasitized D. suzukii puparia from the soil through a sieve and flotation system, allowing for effective collection of puparia, from which parasitoids can then be reared. Although the method considerably underestimates the absolute number of puparia in soil samples, it nonetheless yields a high number of puparia relative to sampling effort and provides a robust estimate of the relative abundance of puparia among samples. Using this method, we confirmed that at least 5 species of parasitoids, including some that have rarely been detected in past studies, overwinter in their immature stages inside D. suzukii puparia in south coastal British Columbia, Canada. The ability to sample puparia from the soil will lead to a more comprehensive view of both D. suzukii and parasitoid abundance throughout the season, help confirm parasitoid establishment following intentional releases, and provide a way to measure the diversity of parasitoid species and potential interactions among parasitoids (e.g., hyper- or klepto-parasitism) that may often occur on the soil surface.
期刊介绍:
The Journal of Insect Science was founded with support from the University of Arizona library in 2001 by Dr. Henry Hagedorn, who served as editor-in-chief until his death in January 2014. The Entomological Society of America was very pleased to add the Journal of Insect Science to its publishing portfolio in 2014. The fully open access journal publishes papers in all aspects of the biology of insects and other arthropods from the molecular to the ecological, and their agricultural and medical impact.