A Dynamic Task Scheduling Algorithm for Airborne Device Clouds

IF 1.1 4区 工程技术 Q3 ENGINEERING, AEROSPACE International Journal of Aerospace Engineering Pub Date : 2024-02-26 DOI:10.1155/2024/9922714
Bao Deng, Zhengjun Zhai
{"title":"A Dynamic Task Scheduling Algorithm for Airborne Device Clouds","authors":"Bao Deng, Zhengjun Zhai","doi":"10.1155/2024/9922714","DOIUrl":null,"url":null,"abstract":"The rapid development of mobile Internet has promoted the rapid rise of cloud computing technology. Mobile terminal devices have greatly expanded the service capacity of mobile terminals by migrating complex computing tasks to run in the cloud. However, in the process of data exchange between mobile terminals and cloud computing centers, on the one hand, it consumes the limited power of mobile terminals, and on the other hand, it results in longer communication time, which negatively affects user QoE. Mobile cloud can effectively improve user QoE by shortening the data transmission distance, reducing the power consumption, and shortening the communication time at the same time. In this paper, we utilize the property that genetic algorithm can perform global search seeking the global optimal solution and construct a dynamic task scheduling model by combining the device-cloud link. The task scheduling model based on genetic algorithm and random scheduling algorithm is compared through comparison experiments, which show that the assignment time of the task scheduling model based on genetic algorithm is shortened by 11.82% to 48.51% and the energy consumption is reduced by 22.28% to 47.52% under different load conditions.","PeriodicalId":13748,"journal":{"name":"International Journal of Aerospace Engineering","volume":"183 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aerospace Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/9922714","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid development of mobile Internet has promoted the rapid rise of cloud computing technology. Mobile terminal devices have greatly expanded the service capacity of mobile terminals by migrating complex computing tasks to run in the cloud. However, in the process of data exchange between mobile terminals and cloud computing centers, on the one hand, it consumes the limited power of mobile terminals, and on the other hand, it results in longer communication time, which negatively affects user QoE. Mobile cloud can effectively improve user QoE by shortening the data transmission distance, reducing the power consumption, and shortening the communication time at the same time. In this paper, we utilize the property that genetic algorithm can perform global search seeking the global optimal solution and construct a dynamic task scheduling model by combining the device-cloud link. The task scheduling model based on genetic algorithm and random scheduling algorithm is compared through comparison experiments, which show that the assignment time of the task scheduling model based on genetic algorithm is shortened by 11.82% to 48.51% and the energy consumption is reduced by 22.28% to 47.52% under different load conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机载设备云的动态任务调度算法
移动互联网的快速发展推动了云计算技术的迅速崛起。移动终端设备将复杂的计算任务迁移到云端运行,极大地拓展了移动终端的服务能力。然而,在移动终端与云计算中心进行数据交换的过程中,一方面消耗了移动终端有限的电能,另一方面导致通信时间延长,对用户 QoE 产生了负面影响。移动云可以缩短数据传输距离,降低功耗,同时缩短通信时间,从而有效改善用户 QoE。本文利用遗传算法可以进行全局搜索寻求全局最优解的特性,结合设备-云链路构建了动态任务调度模型。通过对比实验比较了基于遗传算法和随机调度算法的任务调度模型,结果表明,在不同负载条件下,基于遗传算法的任务调度模型的任务分配时间缩短了 11.82% 至 48.51%,能耗降低了 22.28% 至 47.52%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.70
自引率
7.10%
发文量
195
审稿时长
22 weeks
期刊介绍: International Journal of Aerospace Engineering aims to serve the international aerospace engineering community through dissemination of scientific knowledge on practical engineering and design methodologies pertaining to aircraft and space vehicles. Original unpublished manuscripts are solicited on all areas of aerospace engineering including but not limited to: -Mechanics of materials and structures- Aerodynamics and fluid mechanics- Dynamics and control- Aeroacoustics- Aeroelasticity- Propulsion and combustion- Avionics and systems- Flight simulation and mechanics- Unmanned air vehicles (UAVs). Review articles on any of the above topics are also welcome.
期刊最新文献
Comparative Study and Airspeed Sensitivity Analysis of Full-Wing Solar-Powered UAVs Using Rigid-Body, Multibody, and Rigid-Flexible Combo Models Enhanced Multi-UAV Path Planning in Complex Environments With Voronoi-Based Obstacle Modelling and Q-Learning Multi-UAV Cooperative Air Combat Target Assignment Method Based on VNS-IBPSO in Complex Dynamic Environment A Sparse CoSaMP Channel Estimation Algorithm With Adaptive Variable Step Size for an OFDM System Mechanism and Application of Attitude and Orbit Coupling Dynamics for Spacecraft Proximity Relative Motion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1