Joint Task Offloading Based on Distributed Deep Reinforcement Learning-Based Genetic Optimization Algorithm for Internet of Vehicles

IF 2.9 2区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Grid Computing Pub Date : 2024-02-26 DOI:10.1007/s10723-024-09741-x
Hulin Jin, Yong-Guk Kim, Zhiran Jin, Chunyang Fan, Yonglong Xu
{"title":"Joint Task Offloading Based on Distributed Deep Reinforcement Learning-Based Genetic Optimization Algorithm for Internet of Vehicles","authors":"Hulin Jin, Yong-Guk Kim, Zhiran Jin, Chunyang Fan, Yonglong Xu","doi":"10.1007/s10723-024-09741-x","DOIUrl":null,"url":null,"abstract":"<p>The growing number of individual vehicles and intelligent transportation systems have accelerated the development of Internet of Vehicles (IoV) technologies. The Internet of Vehicles (IoV) refers to a highly interactive network containing data regarding places, speeds, routes, and other aspects of vehicles. Task offloading was implemented to solve the issue that the current task scheduling models and tactics are primarily simplistic and do not consider the acceptable distribution of tasks, which results in a poor unloading completion rate. This work evaluates the Joint Task Offloading problem by Distributed Deep Reinforcement Learning (DDRL)-Based Genetic Optimization Algorithm (GOA). A system’s utility optimisation model is initially accomplished objectively using divisions between interaction and computation models. DDRL-GOA resolves the issue to produce the best task offloading method. The research increased job completion rates by modifying the complexity design and universal best-case scenario assurances using DDRL-GOA. Finally, empirical research is performed to validate the proposed technique in scenario development. We also construct joint task offloading, load distribution, and resource allocation to lower system costs as integer concerns. In addition to having a high convergence efficiency, the experimental results show that the proposed approach has a substantially lower system cost when compared to current methods.</p>","PeriodicalId":54817,"journal":{"name":"Journal of Grid Computing","volume":"46 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Grid Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10723-024-09741-x","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The growing number of individual vehicles and intelligent transportation systems have accelerated the development of Internet of Vehicles (IoV) technologies. The Internet of Vehicles (IoV) refers to a highly interactive network containing data regarding places, speeds, routes, and other aspects of vehicles. Task offloading was implemented to solve the issue that the current task scheduling models and tactics are primarily simplistic and do not consider the acceptable distribution of tasks, which results in a poor unloading completion rate. This work evaluates the Joint Task Offloading problem by Distributed Deep Reinforcement Learning (DDRL)-Based Genetic Optimization Algorithm (GOA). A system’s utility optimisation model is initially accomplished objectively using divisions between interaction and computation models. DDRL-GOA resolves the issue to produce the best task offloading method. The research increased job completion rates by modifying the complexity design and universal best-case scenario assurances using DDRL-GOA. Finally, empirical research is performed to validate the proposed technique in scenario development. We also construct joint task offloading, load distribution, and resource allocation to lower system costs as integer concerns. In addition to having a high convergence efficiency, the experimental results show that the proposed approach has a substantially lower system cost when compared to current methods.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于分布式深度强化学习遗传优化算法的车联网联合任务卸载
越来越多的个体车辆和智能交通系统加速了车联网(IoV)技术的发展。车辆互联网(IoV)指的是一个高度交互的网络,其中包含有关地点、速度、路线和车辆其他方面的数据。目前的任务调度模型和战术主要是简单化的,没有考虑任务的可接受分布,导致卸载完成率不高,为了解决这一问题,实现了任务卸载。这项工作通过基于分布式深度强化学习(DDRL)的遗传优化算法(GOA)评估了联合任务卸载问题。系统的效用优化模型最初是通过交互模型和计算模型的划分来客观完成的。DDRL-GOA 解决了这一问题,从而产生了最佳的任务卸载方法。研究通过使用 DDRL-GOA 修改复杂性设计和通用最佳情况保证,提高了任务完成率。最后,我们进行了实证研究,以验证所提出的情景开发技术。我们还构建了联合任务卸载、负载分配和资源分配以降低系统成本的整数关注点。除了具有较高的收敛效率外,实验结果表明,与现有方法相比,建议的方法大大降低了系统成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Grid Computing
Journal of Grid Computing COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
8.70
自引率
9.10%
发文量
34
审稿时长
>12 weeks
期刊介绍: Grid Computing is an emerging technology that enables large-scale resource sharing and coordinated problem solving within distributed, often loosely coordinated groups-what are sometimes termed "virtual organizations. By providing scalable, secure, high-performance mechanisms for discovering and negotiating access to remote resources, Grid technologies promise to make it possible for scientific collaborations to share resources on an unprecedented scale, and for geographically distributed groups to work together in ways that were previously impossible. Similar technologies are being adopted within industry, where they serve as important building blocks for emerging service provider infrastructures. Even though the advantages of this technology for classes of applications have been acknowledged, research in a variety of disciplines, including not only multiple domains of computer science (networking, middleware, programming, algorithms) but also application disciplines themselves, as well as such areas as sociology and economics, is needed to broaden the applicability and scope of the current body of knowledge.
期刊最新文献
Assessing the Complexity of Cloud Pricing Policies: A Comparative Market Analysis A Quasi-Oppositional Learning-based Fox Optimizer for QoS-aware Web Service Composition in Mobile Edge Computing WIDESim: A Toolkit for Simulating Resource Management Techniques Of Scientific Workflows in Distributed Environments with Graph Topology CMK: Enhancing Resource Usage Monitoring across Diverse Bioinformatics Workflow Management Systems Resource Utilization Based on Hybrid WOA-LOA Optimization with Credit Based Resource Aware Load Balancing and Scheduling Algorithm for Cloud Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1