Ante- and Post-Mortem Fracture Identification Protocol Based on Low- and High-Level Fusion Using Fourier Transform Infrared Spectroscopy and Raman Spectroscopy Association.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-06-01 Epub Date: 2024-02-25 DOI:10.1177/00037028241231994
Kai Yu, Hao Wu, Hongli Xiong, Gongji Wang, Xin Wei, Xinggong Liang, Run Chen, Yuanyuan Zhang, Kai Zhang, Zhenyuan Wang
{"title":"Ante- and Post-Mortem Fracture Identification Protocol Based on Low- and High-Level Fusion Using Fourier Transform Infrared Spectroscopy and Raman Spectroscopy Association.","authors":"Kai Yu, Hao Wu, Hongli Xiong, Gongji Wang, Xin Wei, Xinggong Liang, Run Chen, Yuanyuan Zhang, Kai Zhang, Zhenyuan Wang","doi":"10.1177/00037028241231994","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, the application of low-level fusion (LLF) and high-level fusion (HLF) strategies using a combination of Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy in the identification of antemortem and postmortem fracture at different postmortem intervals (PMIs) was investigated. On a technical level, the same hard tissue sample can be detected using a mix of FT-IR and Raman techniques. At the method level, two cutting-edge chemometrics approaches (LLF and HLF) combining FT-IR and Raman spectroscopic data are explored. The models were ranked in accordance with their parametric quality as follows: HLF and LLF + HLF models > LLF single model > Raman single model > FT-IR single model. The LLF model performed marginally better than the Raman model, however, when compared to other models, the HLF model performed considerably better. The HLF model achieved the best performance, with both cross-validation accuracy and test data set accuracy of 0.88. The importance of the feature wavelengths in the model construction process was subsequently evaluated by intersection fusion, and it was found that the absorbance bands of amide I, PO<sub>4</sub><sup>3-</sup> ν<sub>1</sub> ν<sub>3,</sub> and CH<sub>2</sub> in FT-IR and phenylalanine, CO<sub>3</sub><sup>2-</sup> ν<sub>1</sub>- PO<sub>4</sub><sup>3-</sup> ν<sub>3</sub>, and amide III in Raman have outstanding contributions to the construction of antemortem and postmortem fractures identification models. Overall, the combination of FT-IR and Raman with the HLF strategy is a novel and promising approach for developing antemortem and postmortem fracture identification models at different PMIs.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/00037028241231994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the application of low-level fusion (LLF) and high-level fusion (HLF) strategies using a combination of Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy in the identification of antemortem and postmortem fracture at different postmortem intervals (PMIs) was investigated. On a technical level, the same hard tissue sample can be detected using a mix of FT-IR and Raman techniques. At the method level, two cutting-edge chemometrics approaches (LLF and HLF) combining FT-IR and Raman spectroscopic data are explored. The models were ranked in accordance with their parametric quality as follows: HLF and LLF + HLF models > LLF single model > Raman single model > FT-IR single model. The LLF model performed marginally better than the Raman model, however, when compared to other models, the HLF model performed considerably better. The HLF model achieved the best performance, with both cross-validation accuracy and test data set accuracy of 0.88. The importance of the feature wavelengths in the model construction process was subsequently evaluated by intersection fusion, and it was found that the absorbance bands of amide I, PO43- ν1 ν3, and CH2 in FT-IR and phenylalanine, CO32- ν1- PO43- ν3, and amide III in Raman have outstanding contributions to the construction of antemortem and postmortem fractures identification models. Overall, the combination of FT-IR and Raman with the HLF strategy is a novel and promising approach for developing antemortem and postmortem fracture identification models at different PMIs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于傅立叶变换红外光谱和拉曼光谱低层次和高层次融合的死前和死后骨折鉴定协议。
在这项研究中,研究人员结合使用傅立叶变换红外光谱(FT-IR)和拉曼光谱,研究了低水平融合(LLF)和高水平融合(HLF)策略在鉴定不同死后间隔(PMIs)的死前和死后骨折中的应用。在技术层面上,同一硬组织样本可混合使用傅立叶变换红外光谱和拉曼光谱技术进行检测。在方法层面,探讨了结合傅立叶变换红外光谱和拉曼光谱数据的两种尖端化学计量学方法(LLF 和 HLF)。根据参数质量对模型进行了如下排序:HLF 和 LLF + HLF 模型 > LLF 单一模型 > 拉曼单一模型 > FT-IR 单一模型。LLF 模型的性能略好于拉曼模型,但与其他模型相比,HLF 模型的性能要好得多。HLF 模型的性能最好,交叉验证准确度和测试数据集准确度均为 0.88。随后通过交集融合评估了特征波长在模型构建过程中的重要性,结果发现傅立叶变换红外光谱中的酰胺 I、PO43- ν1 ν3、CH2 和拉曼光谱中的苯丙氨酸、CO32- ν1- PO43- ν3、酰胺 III 的吸光度带对构建死前和死后骨折鉴定模型有突出贡献。总之,将傅立叶变换红外光谱和拉曼光谱与 HLF 策略相结合是一种新颖而有前途的方法,可用于建立不同 PMI 下的死前和死后骨折鉴定模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1