Ashwin P Rao, Noshin Nawar, Christopher J Annesley
{"title":"Machine Learning-Assisted Determination of C<sub>6</sub>H<sub>14</sub> Mole Fraction From Molecular Emissions of Laser-Induced Hexane-Air Plasmas.","authors":"Ashwin P Rao, Noshin Nawar, Christopher J Annesley","doi":"10.1177/00037028241233309","DOIUrl":null,"url":null,"abstract":"<p><p>Laser-induced plasmas of materials containing hydrocarbons present strong carbon molecular emission features. Using these emissions to build models relating changes in spectral features to a physical parameter of the system, such as hydrocarbon content, can be difficult because of the dynamic complexity of the spectral features and temperature disequilibrium between molecular species. This study presents machine learning models trained to quantify the mole fraction of hexane in hexane-air plasmas from CN Violet and C<sub>2</sub> Swan spectral features. Ensemble regression methods provide the most accurate predictions with root mean squared error on the order 10<sup>-2</sup>. Artificial neural network regressions produce predictions with superlative sensitivity, exhibiting detection limits as low as 0.008. These foundational models can be further refined with more advanced data to quantify the presence of carbon species in complex plasma environments, such as high-speed reacting flows.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"734-743"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/00037028241233309","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Laser-induced plasmas of materials containing hydrocarbons present strong carbon molecular emission features. Using these emissions to build models relating changes in spectral features to a physical parameter of the system, such as hydrocarbon content, can be difficult because of the dynamic complexity of the spectral features and temperature disequilibrium between molecular species. This study presents machine learning models trained to quantify the mole fraction of hexane in hexane-air plasmas from CN Violet and C2 Swan spectral features. Ensemble regression methods provide the most accurate predictions with root mean squared error on the order 10-2. Artificial neural network regressions produce predictions with superlative sensitivity, exhibiting detection limits as low as 0.008. These foundational models can be further refined with more advanced data to quantify the presence of carbon species in complex plasma environments, such as high-speed reacting flows.
期刊介绍:
Applied Spectroscopy is one of the world''s leading spectroscopy journals, publishing high-quality peer-reviewed articles, both fundamental and applied, covering all aspects of spectroscopy. Established in 1951, the journal is owned by the Society for Applied Spectroscopy and is published monthly. The journal is dedicated to fulfilling the mission of the Society to “…advance and disseminate knowledge and information concerning the art and science of spectroscopy and other allied sciences.”