Redox Status of Erythrocytes as an Important Factor in Eryptosis and Erythronecroptosis.

IF 1.1 4区 医学 Q3 BIOLOGY Folia Biologica Pub Date : 2023-01-01 DOI:10.14712/fb2023069040116
Anton Tkachenko, Ondřej Havránek
{"title":"Redox Status of Erythrocytes as an Important Factor in Eryptosis and Erythronecroptosis.","authors":"Anton Tkachenko, Ondřej Havránek","doi":"10.14712/fb2023069040116","DOIUrl":null,"url":null,"abstract":"<p><p>Overall, reactive oxygen species (ROS) signalling significantly contributes to initiation and mo-dulation of multiple regulated cell death (RCD) pathways. Lately, more information has become available about RCD modalities of erythrocytes, including the role of ROS. ROS accumulation has therefore been increasingly recognized as a critical factor involved in eryptosis (apoptosis of erythrocytes) and erythro-necroptosis (necroptosis of erythrocytes). Eryptosis is a Ca2+-dependent apoptosis-like RCD of erythrocytes that occurs in response to oxidative stress, hyperosmolarity, ATP depletion, and a wide range of xenobiotics. Moreover, eryptosis seems to be involved in the pathogenesis of multiple human diseases and pathological processes. Several studies have reported that erythrocytes can also undergo necroptosis, a lytic RIPK1/RIPK3/MLKL-mediated RCD. As an example, erythronecroptosis can occur in response to CD59-specific pore-forming toxins. We have systematically summarized available studies regarding the involvement of ROS and oxidative stress in these two distinct RCDs of erythrocytes. We have focused specifically on cellular signalling pathways involved in ROS-mediated cell death decisions in erythrocytes. Furthermore, we have summarized dysregulation of related erythrocytic antioxidant defence systems. The general concept of the ROS role in eryptotic and necroptotic cell death pathways in erythrocytes seems to be established. However, further studies are required to uncover the complex role of ROS in the crosstalk and interplay between the survival and RCDs of erythrocytes.</p>","PeriodicalId":12281,"journal":{"name":"Folia Biologica","volume":"69 4","pages":"116-126"},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folia Biologica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.14712/fb2023069040116","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Overall, reactive oxygen species (ROS) signalling significantly contributes to initiation and mo-dulation of multiple regulated cell death (RCD) pathways. Lately, more information has become available about RCD modalities of erythrocytes, including the role of ROS. ROS accumulation has therefore been increasingly recognized as a critical factor involved in eryptosis (apoptosis of erythrocytes) and erythro-necroptosis (necroptosis of erythrocytes). Eryptosis is a Ca2+-dependent apoptosis-like RCD of erythrocytes that occurs in response to oxidative stress, hyperosmolarity, ATP depletion, and a wide range of xenobiotics. Moreover, eryptosis seems to be involved in the pathogenesis of multiple human diseases and pathological processes. Several studies have reported that erythrocytes can also undergo necroptosis, a lytic RIPK1/RIPK3/MLKL-mediated RCD. As an example, erythronecroptosis can occur in response to CD59-specific pore-forming toxins. We have systematically summarized available studies regarding the involvement of ROS and oxidative stress in these two distinct RCDs of erythrocytes. We have focused specifically on cellular signalling pathways involved in ROS-mediated cell death decisions in erythrocytes. Furthermore, we have summarized dysregulation of related erythrocytic antioxidant defence systems. The general concept of the ROS role in eryptotic and necroptotic cell death pathways in erythrocytes seems to be established. However, further studies are required to uncover the complex role of ROS in the crosstalk and interplay between the survival and RCDs of erythrocytes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
红细胞的氧化还原状态是红细胞色素沉着和红细胞色素沉着的重要因素
总体而言,活性氧(ROS)信号在多种调控细胞死亡(RCD)途径的启动和调节中起着重要作用。最近,有关红细胞 RCD 模式的信息越来越多,其中包括 ROS 的作用。因此,人们越来越认识到,ROS 的积累是参与红细胞凋亡和红细胞坏死的关键因素。红细胞凋亡是红细胞对 Ca2+ 依赖性凋亡样 RCD 的一种反应,在氧化应激、高渗透压、ATP 耗尽和多种异种生物作用下发生。此外,红细胞增多症似乎与多种人类疾病和病理过程的发病机制有关。一些研究报告称,红细胞也会发生坏死,这是一种由 RIPK1/RIPK3/MLKL 介导的溶解性 RCD。例如,CD59 特异性孔形成毒素可导致红细胞坏死。我们系统地总结了有关 ROS 和氧化应激参与红细胞这两种不同的 RCD 的现有研究。我们特别关注了参与 ROS 介导的红细胞细胞死亡决定的细胞信号通路。此外,我们还总结了相关红细胞抗氧化防御系统的失调情况。关于 ROS 在红细胞红细胞死亡和坏死细胞死亡途径中的作用的一般概念似乎已经确立。然而,要揭示 ROS 在红细胞存活和 RCD 之间的相互影响和相互作用中的复杂作用,还需要进一步的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Folia Biologica
Folia Biologica 医学-生物学
CiteScore
1.40
自引率
0.00%
发文量
5
审稿时长
3 months
期刊介绍: Journal of Cellular and Molecular Biology publishes articles describing original research aimed at the elucidation of a wide range of questions of biology and medicine at the cellular and molecular levels. Studies on all organisms as well as on human cells and tissues are welcome.
期刊最新文献
Reactive Oxygen Species Modulate Th17/Treg Balance in Chlamydia psittaci Pneumonia via NLRP3/IL-1β/Caspase-1 Pathway Differentiation. Taurine Improved Autism-Like Behaviours and Defective Neurogenesis of the Hippocampus in BTBR Mice through the PTEN/mTOR/AKT Signalling Pathway. 70th Anniversary of Folia Biologica. Gallic Acid Alleviates Psoriasis Keratinization and Inflammation by Regulating BRD4 Expression. Parallel DNA/RNA NGS Using an Identical Target Enrichment Panel in the Analysis of Hereditary Cancer Predisposition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1