Mohammad Rasouli, Fatemeh Safari, Mohammad Hossein Kanani, Hiva Ahvati
{"title":"Principles of Hanging Drop Method (Spheroid Formation) in Cell Culture.","authors":"Mohammad Rasouli, Fatemeh Safari, Mohammad Hossein Kanani, Hiva Ahvati","doi":"10.1007/7651_2024_527","DOIUrl":null,"url":null,"abstract":"<p><p>A type of three-dimensional (3D) cell culture models which is simple and easy is hanging drop method. The hanging drop method emerges as a pivotal technique with diverse applications in cancer research and cell biology. This method facilitates the formation of multicellular spheroids, providing a unique environment for studying cell behavior dynamics. The hanging drop method's theoretical underpinning relies on gravity-enforced self-assembly, allowing for cost-effective, reproducible 3D cell cultures with controlled spheroid sizes. The advantages of this approach include its efficiency in producing cellular heterogeneity, particularly in non-adherent 3D cultures, and its ability to create hypoxic spheroids, making it a suitable model for studying cancer. Moreover, the hanging drop method has proven valuable in investigating various aspects such as tissue structure, signaling pathways, immune activation of cancer cells, and notably, cell proliferation. Researchers have utilized the hanging drop method to explore the dynamics of cell proliferation, studying the effects of mesenchymal stem cells (MSC) secretome on cancer cells. The method's application involves co-culturing different cell lines, assessing spheroid formations, and quantifying their sizes over time. These studies have unveiled intricate cell behavior dynamics, demonstrating how the MSC secretome influences cancer cell growth and viability within a three-dimensional co-culture paradigm.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/7651_2024_527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
A type of three-dimensional (3D) cell culture models which is simple and easy is hanging drop method. The hanging drop method emerges as a pivotal technique with diverse applications in cancer research and cell biology. This method facilitates the formation of multicellular spheroids, providing a unique environment for studying cell behavior dynamics. The hanging drop method's theoretical underpinning relies on gravity-enforced self-assembly, allowing for cost-effective, reproducible 3D cell cultures with controlled spheroid sizes. The advantages of this approach include its efficiency in producing cellular heterogeneity, particularly in non-adherent 3D cultures, and its ability to create hypoxic spheroids, making it a suitable model for studying cancer. Moreover, the hanging drop method has proven valuable in investigating various aspects such as tissue structure, signaling pathways, immune activation of cancer cells, and notably, cell proliferation. Researchers have utilized the hanging drop method to explore the dynamics of cell proliferation, studying the effects of mesenchymal stem cells (MSC) secretome on cancer cells. The method's application involves co-culturing different cell lines, assessing spheroid formations, and quantifying their sizes over time. These studies have unveiled intricate cell behavior dynamics, demonstrating how the MSC secretome influences cancer cell growth and viability within a three-dimensional co-culture paradigm.
期刊介绍:
For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.