Explained variation and degrees of necessity and of sufficiency for competing risks survival data

IF 1.3 3区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Biometrical Journal Pub Date : 2024-02-26 DOI:10.1002/bimj.202300140
Andreas Gleiss, Michael Gnant, Michael Schemper
{"title":"Explained variation and degrees of necessity and of sufficiency for competing risks survival data","authors":"Andreas Gleiss,&nbsp;Michael Gnant,&nbsp;Michael Schemper","doi":"10.1002/bimj.202300140","DOIUrl":null,"url":null,"abstract":"<p>In this contribution, the Schemper–Henderson measure of explained variation for survival outcomes is extended to accommodate competing events (CEs) in addition to events of interest. The extension is achieved by moving from the unconditional and conditional survival functions of the original measure to unconditional and conditional cumulative incidence functions, the latter obtained, for example, from Fine and Gray models. In the absence of CEs, the original measure is obtained as a special case. We define explained variation on the population level and provide two different types of estimates. Recently, the authors have achieved a multiplicative decomposition of explained variation into degrees of necessity and degrees of sufficiency. These measures are also extended to the case of competing risks survival data. A SAS macro and an R function are provided to facilitate application. Interesting empirical properties of the measures are explored on the population level and by an extensive simulation study. Advantages of the approach are exemplified by an Austrian study of breast cancer with a high proportion of CEs.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"66 2","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202300140","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrical Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202300140","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In this contribution, the Schemper–Henderson measure of explained variation for survival outcomes is extended to accommodate competing events (CEs) in addition to events of interest. The extension is achieved by moving from the unconditional and conditional survival functions of the original measure to unconditional and conditional cumulative incidence functions, the latter obtained, for example, from Fine and Gray models. In the absence of CEs, the original measure is obtained as a special case. We define explained variation on the population level and provide two different types of estimates. Recently, the authors have achieved a multiplicative decomposition of explained variation into degrees of necessity and degrees of sufficiency. These measures are also extended to the case of competing risks survival data. A SAS macro and an R function are provided to facilitate application. Interesting empirical properties of the measures are explored on the population level and by an extensive simulation study. Advantages of the approach are exemplified by an Austrian study of breast cancer with a high proportion of CEs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
竞争风险生存数据的解释变异及必要性和充分性程度。
在这篇论文中,Schemper-Henderson 生存结果解释变异度量方法得到了扩展,除感兴趣的事件外,还包括竞争事件 (CE)。这一扩展是通过将原始测量的无条件和有条件生存函数转换为无条件和有条件累积发病率函数来实现的,例如,后者是从 Fine 和 Gray 模型中获得的。在没有 CE 的情况下,原始测量结果是作为一种特例得到的。我们定义了人口层面的解释变异,并提供了两种不同类型的估计值。最近,作者实现了将解释变异乘法分解为必要性程度和充分性程度。这些测量方法也扩展到了竞争风险生存数据的情况。为了便于应用,作者提供了一个 SAS 宏和一个 R 函数。通过广泛的模拟研究,在群体水平上探索了这些度量的有趣经验特性。该方法的优势体现在奥地利的一项乳腺癌研究中,其中 CEs 所占比例很高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biometrical Journal
Biometrical Journal 生物-数学与计算生物学
CiteScore
3.20
自引率
5.90%
发文量
119
审稿时长
6-12 weeks
期刊介绍: Biometrical Journal publishes papers on statistical methods and their applications in life sciences including medicine, environmental sciences and agriculture. Methodological developments should be motivated by an interesting and relevant problem from these areas. Ideally the manuscript should include a description of the problem and a section detailing the application of the new methodology to the problem. Case studies, review articles and letters to the editors are also welcome. Papers containing only extensive mathematical theory are not suitable for publication in Biometrical Journal.
期刊最新文献
A Preplanned Multi-Stage Platform Trial for Discovering Multiple Superior Treatments With Control of FWER and Power. Developing and Comparing Four Families of Bayesian Network Autocorrelation Models for Binary Outcomes: Estimating Peer Effects Involving Adoption of Medical Technologies. Sensitivity Analysis for Effects of Multiple Exposures in the Presence of Unmeasured Confounding. Quantification of Difference in Nonselectivity Between In Vitro Diagnostic Medical Devices. Investigating a Domain Adaptation Approach for Integrating Different Measurement Instruments in a Longitudinal Clinical Registry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1