Effectiveness of Novel Drug Delivery System using Curcumin in Alzheimer's Disease.

Urmila Aswar, Kundlik Rathod, Dyandevi Mathure
{"title":"Effectiveness of Novel Drug Delivery System using Curcumin in Alzheimer's Disease.","authors":"Urmila Aswar, Kundlik Rathod, Dyandevi Mathure","doi":"10.2174/0118715249279534240214111155","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a form of brain degeneration that gradually impairs a person's memory and cognitive skills, eventually making it harder for them to perform everyday activities. Its pathophysiology has been attributed to the deposition of amyloid β (Aβ), neurofibrillary tangles (NFT), and α-synuclein (A-s) in some cases. Presently, 4 drugs have been approved for the treatment. They are Donepezil, Rivastigmine, Galantamine and Memantine. The first three are acetylcholinesterase inhibitors, while memantine is an NMDA receptor antagonist. Even though these medications are successful in treating mild to moderate Alzheimer's disease, they have not been able to reverse the disease or even slow its progression completely. Hence, natural products are gaining more popularity due to the advantage of the multitarget intervention effect. The most investigated spice, <i>Curcuma longa</i>'s bioactive component, curcumin, has demonstrated anti-amyloid, anti-NFT, and anti-Lewy body properties and substantial antiinflammatory, antioxidant, and antiapoptotic properties. However, its proven neuroprotective activity is hampered by many factors, such as poor water solubility and bioavailability. Therefore, many novel formulations have been designed to improve its bioavailability with methods such as 1) Micellar Solubilization, 2) Cyclodextrin Complexation, 3) Crystal Modification, and 4) Particle Size Reduction, etc. The current chapter aims to summarize various novel formulations of curcumin and their effectiveness in treating AD.</p>","PeriodicalId":93930,"journal":{"name":"Central nervous system agents in medicinal chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central nervous system agents in medicinal chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0118715249279534240214111155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer's disease (AD) is a form of brain degeneration that gradually impairs a person's memory and cognitive skills, eventually making it harder for them to perform everyday activities. Its pathophysiology has been attributed to the deposition of amyloid β (Aβ), neurofibrillary tangles (NFT), and α-synuclein (A-s) in some cases. Presently, 4 drugs have been approved for the treatment. They are Donepezil, Rivastigmine, Galantamine and Memantine. The first three are acetylcholinesterase inhibitors, while memantine is an NMDA receptor antagonist. Even though these medications are successful in treating mild to moderate Alzheimer's disease, they have not been able to reverse the disease or even slow its progression completely. Hence, natural products are gaining more popularity due to the advantage of the multitarget intervention effect. The most investigated spice, Curcuma longa's bioactive component, curcumin, has demonstrated anti-amyloid, anti-NFT, and anti-Lewy body properties and substantial antiinflammatory, antioxidant, and antiapoptotic properties. However, its proven neuroprotective activity is hampered by many factors, such as poor water solubility and bioavailability. Therefore, many novel formulations have been designed to improve its bioavailability with methods such as 1) Micellar Solubilization, 2) Cyclodextrin Complexation, 3) Crystal Modification, and 4) Particle Size Reduction, etc. The current chapter aims to summarize various novel formulations of curcumin and their effectiveness in treating AD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用姜黄素的新型给药系统对阿尔茨海默病的疗效
阿尔茨海默病(AD)是一种脑部退化疾病,会逐渐损害患者的记忆力和认知能力,最终导致患者难以进行日常活动。其病理生理学归因于淀粉样β(Aβ)、神经纤维缠结(NFT)和α-突触核蛋白(A-s)的沉积。目前,已有 4 种药物获准用于治疗。它们是多奈哌齐(Donepezil)、利伐斯的明(Rivastigmine)、加兰他敏(Galantamine)和美金刚(Memantine)。前三种是乙酰胆碱酯酶抑制剂,而美金刚则是一种 NMDA 受体拮抗剂。尽管这些药物能成功治疗轻度至中度阿尔茨海默病,但却无法逆转病情,甚至无法完全减缓病情的发展。因此,天然产品因其多靶点干预效果的优势而越来越受欢迎。研究最多的香料是姜黄的生物活性成分姜黄素,它具有抗淀粉样蛋白、抗 NFT 和抗 Lewy 体的特性,以及大量的抗炎、抗氧化和抗细胞凋亡特性。然而,其已被证实的神经保护活性受到许多因素的影响,如水溶性和生物利用度较差。因此,人们设计了许多新型制剂来提高其生物利用度,如 1)微孔溶解;2)环糊精复合物;3)晶体改性;4)粒径缩小等。本章旨在总结姜黄素的各种新型制剂及其治疗 AD 的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Antidepressant Potential of Hispidulin Present in S. barbata D. Don: Mechanistic Insights through Neurochemical and Behavioral Assessments. Identification of Phytoconstituents from Natural Product Database as SIRT2 Inhibitors for Potential Role in Alzheimer's Disease: An In-Silico Screening. Thiazolidine-4-one Analogues: Synthesis, In-Silico Molecular Modeling, and In-vivo Estimation for Anticonvulsant Potential. Novel Emerging Targets Identification in Reducing Risk of Alzheimer's Disease. A Brief Review on Caenorhabditis elegans Role in Modelling Neurodegenerative Disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1