Epigenetics, Bone Remodeling and Osteoporosis.

Current stem cell research & therapy Pub Date : 2016-12-21
Shaoqing Yang, Xiaohong Duan
{"title":"Epigenetics, Bone Remodeling and Osteoporosis.","authors":"Shaoqing Yang, Xiaohong Duan","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Epigenetic regulation, including modifications of DNA, histone proteins and non-coding RNAs, play an important role in the regulation of gene expression and keep the heritable traits of progeny cells without changing DNA sequence. Recent years, epigenetic regulation of bone homeostasis are widely investigated and considered as a vital factor during the differentiation and function of osteoblasts, osteoclasts and osteocytes. Osteoporosis is a common degenerative bone disease which is characterized with decreased bone strength and increased risk of fracture. It has been testified that the abnormal bone metabolism homeostasis, especially in osteoclast function, take a fundamental role in osteoporosis pathogenesis. The reports between osteoporosis and epigenetic regulations are also increased gradually in recent years. In this review, we summarize the current developments of epigenetic regulation mechanism in bone development and remodeling, and emphasize the epigenetic features of osteoporosis and the potent therapy application of epigenetic drugs for osteoporosis.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current stem cell research & therapy","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Epigenetic regulation, including modifications of DNA, histone proteins and non-coding RNAs, play an important role in the regulation of gene expression and keep the heritable traits of progeny cells without changing DNA sequence. Recent years, epigenetic regulation of bone homeostasis are widely investigated and considered as a vital factor during the differentiation and function of osteoblasts, osteoclasts and osteocytes. Osteoporosis is a common degenerative bone disease which is characterized with decreased bone strength and increased risk of fracture. It has been testified that the abnormal bone metabolism homeostasis, especially in osteoclast function, take a fundamental role in osteoporosis pathogenesis. The reports between osteoporosis and epigenetic regulations are also increased gradually in recent years. In this review, we summarize the current developments of epigenetic regulation mechanism in bone development and remodeling, and emphasize the epigenetic features of osteoporosis and the potent therapy application of epigenetic drugs for osteoporosis.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
表观遗传学、骨重塑和骨质疏松症。
表观遗传调控包括 DNA、组蛋白和非编码 RNA 的修饰,在调控基因表达和保持后代细胞遗传性状方面发挥着重要作用,而无需改变 DNA 序列。近年来,骨稳态的表观遗传调控被广泛研究,并被认为是成骨细胞、破骨细胞和骨细胞分化和功能发挥过程中的重要因素。骨质疏松症是一种常见的退行性骨病,其特点是骨强度降低和骨折风险增加。有研究证实,骨代谢平衡异常,尤其是破骨细胞功能异常,在骨质疏松症的发病机制中起着根本性的作用。近年来,关于骨质疏松症与表观遗传调控之间关系的报道也逐渐增多。在这篇综述中,我们总结了骨发育和重塑过程中表观遗传调控机制的最新进展,并强调了骨质疏松症的表观遗传学特征以及表观遗传药物在骨质疏松症中的有效治疗应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of miR-98/IL-6/STAT3 on Autophagy and Apoptosis of Cardiac Stem Cells Under Hypoxic Conditions In vitro. Human Umbilical Cord Mesenchymal Stem Cell-derived Exosome Regulates Intestinal Type 2 Immunity. Kartogenin Induces Chondrogenesis in Cartilage Progenitor Cells and Attenuates Cell Hypertrophy in Marrow-Derived Stromal Cells. The Mechanisms of Mesenchymal Stem Cells in the Treatment of Experimental Autoimmune Encephalomyelitis. The Role of Stem Cell Therapies in the Treatment of Neurodegenerative Diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1