A QOBL-SAO and its variant: An open source software for optimizing PV/wind/battery system and CEC2020 real world problems

IF 1.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Software Impacts Pub Date : 2024-02-23 DOI:10.1016/j.simpa.2024.100630
Abdullahi Abubakar Mas’ud , Ahmed T. Salawudeen , Abubakar A. Umar , Yusuf A. Shaaban , Firdaus Muhammad-Sukki , Umar Musa , Saud J. Alshammari
{"title":"A QOBL-SAO and its variant: An open source software for optimizing PV/wind/battery system and CEC2020 real world problems","authors":"Abdullahi Abubakar Mas’ud ,&nbsp;Ahmed T. Salawudeen ,&nbsp;Abubakar A. Umar ,&nbsp;Yusuf A. Shaaban ,&nbsp;Firdaus Muhammad-Sukki ,&nbsp;Umar Musa ,&nbsp;Saud J. Alshammari","doi":"10.1016/j.simpa.2024.100630","DOIUrl":null,"url":null,"abstract":"<div><p>The Quasi oppositional smell agent optimization (QOBL-SAO) and its levy flight variant (LFQOBL-SAO) are two cutting-edge software tools for optimizing PV/wind/battery power systems. They can also be used to solve real-world CEC2020 optimization problems and are as good as top-performing software such as IUDE, <span><math><mi>ϵ</mi></math></span> MAgES and the iLSHAD <span><math><mi>ɛ</mi></math></span>. The QOBL-SAO exploits the random mode’s weakness and then adds a number to the initial population. The LFQOBL-SAO, on the other hand, improves the random mode’s weakness in order to solve this problem. The LFQOBL-SAO improves performance and search space by using levy flight instead of random code.</p></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"19 ","pages":"Article 100630"},"PeriodicalIF":1.3000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665963824000186/pdfft?md5=34c0be540ac407437f5949fd3034bd29&pid=1-s2.0-S2665963824000186-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Impacts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665963824000186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The Quasi oppositional smell agent optimization (QOBL-SAO) and its levy flight variant (LFQOBL-SAO) are two cutting-edge software tools for optimizing PV/wind/battery power systems. They can also be used to solve real-world CEC2020 optimization problems and are as good as top-performing software such as IUDE, ϵ MAgES and the iLSHAD ɛ. The QOBL-SAO exploits the random mode’s weakness and then adds a number to the initial population. The LFQOBL-SAO, on the other hand, improves the random mode’s weakness in order to solve this problem. The LFQOBL-SAO improves performance and search space by using levy flight instead of random code.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
QOBL-SAO 及其变体:用于优化光伏/风能/电池系统和 CEC2020 实际问题的开源软件
准对立嗅觉代理优化(QOBL-SAO)及其征收飞行变体(LFQOBL-SAO)是用于优化光伏/风能/电池发电系统的两个尖端软件工具。它们还可用于解决现实世界中的 CEC2020 优化问题,与 IUDE、ϵ MAgES 和 iLSHAD ɛ 等性能一流的软件不相上下。QOBL-SAO 利用了随机模式的弱点,然后在初始种群中加入一个数字。而 LFQOBL-SAO 则改进了随机模式的弱点,从而解决了这一问题。LFQOBL-SAO 利用利维飞行代替随机码,从而提高了性能和搜索空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Software Impacts
Software Impacts Software
CiteScore
2.70
自引率
9.50%
发文量
0
审稿时长
16 days
期刊最新文献
mGFD: CloudGenerator SlabCutOpt: A code for ornamental stone slab cut optimization LandSin: A differential ML and google API-enabled web server for real-time land insights and beyond EnhancedBERT: A python software tailored for arabic word sense disambiguation PostgreSQL: Relational database structures application on capacitated lot-sizing for pharmaceutical tablets manufacturing processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1