Supporting a Virtual Vector Instruction Set on a Commercial Compute-in-SRAM Accelerator

IF 1.4 3区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Computer Architecture Letters Pub Date : 2023-12-11 DOI:10.1109/LCA.2023.3341389
Courtney Golden;Dan Ilan;Caroline Huang;Niansong Zhang;Zhiru Zhang;Christopher Batten
{"title":"Supporting a Virtual Vector Instruction Set on a Commercial Compute-in-SRAM Accelerator","authors":"Courtney Golden;Dan Ilan;Caroline Huang;Niansong Zhang;Zhiru Zhang;Christopher Batten","doi":"10.1109/LCA.2023.3341389","DOIUrl":null,"url":null,"abstract":"Recent work has explored compute-in-SRAM as a promising approach to overcome the traditional processor-memory performance gap. The recently released Associative Processing Unit (APU) from GSI Technology is, to our knowledge, the first commercial compute-in-SRAM accelerator. Prior work on this platform has focused on domain-specific acceleration using direct microcode programming and/or specialized libraries. In this letter, we demonstrate the potential for supporting a more general-purpose vector abstraction on the APU. We implement a virtual vector instruction set based on the recently proposed RISC-V Vector (RVV) extensions, analyze tradeoffs in instruction implementations, and perform detailed instruction microbenchmarking to identify performance benefits and overheads. This work is a first step towards general-purpose computing on domain-specific compute-in-SRAM accelerators.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"23 1","pages":"29-32"},"PeriodicalIF":1.4000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10352918/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Recent work has explored compute-in-SRAM as a promising approach to overcome the traditional processor-memory performance gap. The recently released Associative Processing Unit (APU) from GSI Technology is, to our knowledge, the first commercial compute-in-SRAM accelerator. Prior work on this platform has focused on domain-specific acceleration using direct microcode programming and/or specialized libraries. In this letter, we demonstrate the potential for supporting a more general-purpose vector abstraction on the APU. We implement a virtual vector instruction set based on the recently proposed RISC-V Vector (RVV) extensions, analyze tradeoffs in instruction implementations, and perform detailed instruction microbenchmarking to identify performance benefits and overheads. This work is a first step towards general-purpose computing on domain-specific compute-in-SRAM accelerators.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在商用内存计算加速器上支持虚拟矢量指令集
最近的工作探索了一种有希望克服传统处理器与内存性能差距的 "SRAM 内计算 "方法。据我们所知,GSI Technology 公司最近发布的关联处理单元(APU)是第一款商用 SRAM 内计算加速器。此前有关该平台的工作主要集中在使用直接微代码编程和/或专用库进行特定领域加速。在这封信中,我们展示了在 APU 上支持更通用矢量抽象的潜力。我们基于最近提出的 RISC-V 向量 (RVV) 扩展实现了虚拟向量指令集,分析了指令实现中的权衡,并进行了详细的指令微基准测试,以确定性能优势和开销。这项工作是在特定领域的 SRAM 计算加速器上实现通用计算的第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Computer Architecture Letters
IEEE Computer Architecture Letters COMPUTER SCIENCE, HARDWARE & ARCHITECTURE-
CiteScore
4.60
自引率
4.30%
发文量
29
期刊介绍: IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.
期刊最新文献
A Flexible Hybrid Interconnection Design for High-Performance and Energy-Efficient Chiplet-Based Systems Efficient Implementation of Knuth Yao Sampler on Reconfigurable Hardware SmartQuant: CXL-Based AI Model Store in Support of Runtime Configurable Weight Quantization Proactive Embedding on Cold Data for Deep Learning Recommendation Model Training Octopus: A Cycle-Accurate Cache System Simulator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1