Machine learning in neurological disorders: A multivariate LSTM and AdaBoost approach to Alzheimer's disease time series analysis

Muhammad Irfan, Seyed Shahrestani, Mahmoud Elkhodr
{"title":"Machine learning in neurological disorders: A multivariate LSTM and AdaBoost approach to Alzheimer's disease time series analysis","authors":"Muhammad Irfan,&nbsp;Seyed Shahrestani,&nbsp;Mahmoud Elkhodr","doi":"10.1002/hcs2.84","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Introduction</h3>\n \n <p>Alzheimer's disease (AD) is a progressive brain disorder that impairs cognitive functions, behavior, and memory. Early detection is crucial as it can slow down the progression of AD. However, early diagnosis and monitoring of AD's advancement pose significant challenges due to the necessity for complex cognitive assessments and medical tests.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>This study introduces a data acquisition technique and a preprocessing pipeline, combined with multivariate long short-term memory (M-LSTM) and AdaBoost models. These models utilize biomarkers from cognitive assessments and neuroimaging scans to detect the progression of AD in patients, using The AD Prediction of Longitudinal Evolution challenge cohort from the Alzheimer's Disease Neuroimaging Initiative database.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The methodology proposed in this study significantly improved performance metrics. The testing accuracy reached 80% with the AdaBoost model, while the M-LSTM model achieved an accuracy of 82%. This represents a 20% increase in accuracy compared to a recent similar study.</p>\n </section>\n \n <section>\n \n <h3> Discussion</h3>\n \n <p>The findings indicate that the multivariate model, specifically the M-LSTM, is more effective in identifying the progression of AD compared to the AdaBoost model and methodologies used in recent research.</p>\n </section>\n </div>","PeriodicalId":100601,"journal":{"name":"Health Care Science","volume":"3 1","pages":"41-52"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hcs2.84","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Care Science","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hcs2.84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction

Alzheimer's disease (AD) is a progressive brain disorder that impairs cognitive functions, behavior, and memory. Early detection is crucial as it can slow down the progression of AD. However, early diagnosis and monitoring of AD's advancement pose significant challenges due to the necessity for complex cognitive assessments and medical tests.

Methods

This study introduces a data acquisition technique and a preprocessing pipeline, combined with multivariate long short-term memory (M-LSTM) and AdaBoost models. These models utilize biomarkers from cognitive assessments and neuroimaging scans to detect the progression of AD in patients, using The AD Prediction of Longitudinal Evolution challenge cohort from the Alzheimer's Disease Neuroimaging Initiative database.

Results

The methodology proposed in this study significantly improved performance metrics. The testing accuracy reached 80% with the AdaBoost model, while the M-LSTM model achieved an accuracy of 82%. This represents a 20% increase in accuracy compared to a recent similar study.

Discussion

The findings indicate that the multivariate model, specifically the M-LSTM, is more effective in identifying the progression of AD compared to the AdaBoost model and methodologies used in recent research.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经系统疾病中的机器学习:阿尔茨海默病时间序列分析中的多元 LSTM 和 AdaBoost 方法
导言 阿尔茨海默病(AD)是一种渐进性脑部疾病,会损害认知功能、行为和记忆。早期发现可以延缓阿尔茨海默病的进展,因此至关重要。然而,由于需要进行复杂的认知评估和医学测试,早期诊断和监测 AD 的进展带来了巨大挑战。 方法 本研究介绍了一种数据采集技术和预处理管道,并结合了多变量长短期记忆(M-LSTM)和 AdaBoost 模型。这些模型利用认知评估和神经影像扫描中的生物标记物,通过阿尔茨海默病神经影像倡议数据库中的 "纵向演化的AD预测挑战队列 "来检测患者的AD进展情况。 结果 本研究提出的方法显著提高了性能指标。AdaBoost 模型的测试准确率达到 80%,而 M-LSTM 模型的准确率达到 82%。与最近的一项类似研究相比,准确率提高了 20%。 讨论 研究结果表明,与 AdaBoost 模型和近期研究中使用的方法相比,多元模型,特别是 M-LSTM 在识别 AD 进展方面更为有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
期刊最新文献
Study protocol: A national cross-sectional study on psychology and behavior investigation of Chinese residents in 2023. Caregiving in Asia: Priority areas for research, policy, and practice to support family caregivers. Innovative public strategies in response to COVID-19: A review of practices from China. Sixty years of ethical evolution: The 2024 revision of the Declaration of Helsinki (DoH). A novel ensemble ARIMA-LSTM approach for evaluating COVID-19 cases and future outbreak preparedness.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1