JANM-IK: Jacobian Argumented Nelder-Mead Algorithm for Inverse Kinematics and its Hardware Acceleration

IF 1.4 3区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Computer Architecture Letters Pub Date : 2024-02-26 DOI:10.1109/LCA.2024.3369940
Yuxin Yang;Xiaoming Chen;Yinhe Han
{"title":"JANM-IK: Jacobian Argumented Nelder-Mead Algorithm for Inverse Kinematics and its Hardware Acceleration","authors":"Yuxin Yang;Xiaoming Chen;Yinhe Han","doi":"10.1109/LCA.2024.3369940","DOIUrl":null,"url":null,"abstract":"Inverse kinematics is one of the core calculations in robotic applications and has strong performance requirements. Previous hardware acceleration work paid little attention to joint constraints, which can lead to computational failures. We propose a new inverse kinematics algorithm JANM-IK. It uses a hardware-friendly design, optimizes the Jacobian-based method and Nelder-Mead method, realizes the processing of joint constraints, and has a high convergence speed. We further designed its acceleration architecture to achieve high-performance computing through sufficient parallelism and hardware optimization. Finally, after experimental verification, JANM-IK can achieve a very high success rate and obtain certain performance improvements.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10445276/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Inverse kinematics is one of the core calculations in robotic applications and has strong performance requirements. Previous hardware acceleration work paid little attention to joint constraints, which can lead to computational failures. We propose a new inverse kinematics algorithm JANM-IK. It uses a hardware-friendly design, optimizes the Jacobian-based method and Nelder-Mead method, realizes the processing of joint constraints, and has a high convergence speed. We further designed its acceleration architecture to achieve high-performance computing through sufficient parallelism and hardware optimization. Finally, after experimental verification, JANM-IK can achieve a very high success rate and obtain certain performance improvements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
JANM-IK:用于逆运动学的 Jacobian Argumented Nelder-Mead 算法及其硬件加速算法
逆运动学是机器人应用中的核心计算之一,对性能有很高的要求。以往的硬件加速工作很少关注关节约束,这可能导致计算失败。我们提出了一种新的逆运动学算法 JANM-IK。它采用硬件友好型设计,优化了基于雅各布的方法和 Nelder-Mead 方法,实现了对关节约束的处理,并具有较高的收敛速度。我们进一步设计了其加速架构,通过充分的并行性和硬件优化实现高性能计算。最后,经过实验验证,JANM-IK 可以达到很高的成功率,并获得一定的性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Computer Architecture Letters
IEEE Computer Architecture Letters COMPUTER SCIENCE, HARDWARE & ARCHITECTURE-
CiteScore
4.60
自引率
4.30%
发文量
29
期刊介绍: IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.
期刊最新文献
Efficient Implementation of Knuth Yao Sampler on Reconfigurable Hardware SmartQuant: CXL-Based AI Model Store in Support of Runtime Configurable Weight Quantization Proactive Embedding on Cold Data for Deep Learning Recommendation Model Training Octopus: A Cycle-Accurate Cache System Simulator Cycle-Oriented Dynamic Approximation: Architectural Framework to Meet Performance Requirements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1