Wave-Pinned Patterns for Cell Polarity—A Catastrophe Theory Explanation

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-02-26 DOI:10.1137/22m1509758
Fahad Al Saadi, Alan Champneys, Mike R. Jeffrey
{"title":"Wave-Pinned Patterns for Cell Polarity—A Catastrophe Theory Explanation","authors":"Fahad Al Saadi, Alan Champneys, Mike R. Jeffrey","doi":"10.1137/22m1509758","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 721-747, March 2024. <br/> Abstract.A class of four-component reaction-diffusion systems are studied in one spatial dimension, with one of four specific reaction kinetics. Models of this type seek to capture the interaction between active and inactive forms of two G-proteins, known as ROPs in plants, thought to underly cellular polarity formation. The systems conserve total concentration of each ROP, which enables reduction to simple canonical forms when one seeks conditions for homogeneous equilibria or heteroclinic connections between them. Transitions between different multiplicities of such states are classified using a novel application of catastrophe theory. For the time-dependent problem, the heteroclinic connections represent so-called wave-pinned states that separate regions of the domain with different ROP concentrations. It is shown numerically how the form of wave-pinning reached can be predicted as a function of the domain size and initial total ROP concentrations. This leads to state diagrams of different polarity forms as a function of total concentrations and system parameters.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1509758","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 721-747, March 2024.
Abstract.A class of four-component reaction-diffusion systems are studied in one spatial dimension, with one of four specific reaction kinetics. Models of this type seek to capture the interaction between active and inactive forms of two G-proteins, known as ROPs in plants, thought to underly cellular polarity formation. The systems conserve total concentration of each ROP, which enables reduction to simple canonical forms when one seeks conditions for homogeneous equilibria or heteroclinic connections between them. Transitions between different multiplicities of such states are classified using a novel application of catastrophe theory. For the time-dependent problem, the heteroclinic connections represent so-called wave-pinned states that separate regions of the domain with different ROP concentrations. It is shown numerically how the form of wave-pinning reached can be predicted as a function of the domain size and initial total ROP concentrations. This leads to state diagrams of different polarity forms as a function of total concentrations and system parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
细胞极性的波钉模式--灾难理论的解释
SIAM 应用动力系统期刊》,第 23 卷第 1 期,第 721-747 页,2024 年 3 月。 摘要:本文在一个空间维度上研究了一类具有四种特定反应动力学之一的四成分反应扩散系统。这类模型试图捕捉两种 G 蛋白(在植物中称为 ROPs)的活性和非活性形式之间的相互作用,这两种 G 蛋白被认为是细胞极性形成的基础。这些系统保留了每种 ROP 的总浓度,因此当我们寻求它们之间的同质平衡或异质连接条件时,可以将其还原为简单的典型形式。利用灾难理论的新颖应用,可以对这些状态的不同倍数之间的转变进行分类。对于随时间变化的问题,异链连接代表了所谓的波钉状态,它将具有不同 ROP 浓度的域区域分隔开来。数值结果表明,所达到的波钉住状态的形式可作为畴尺寸和初始 ROP 总浓度的函数进行预测。这就得出了不同极性形式的状态图,它是总浓度和系统参数的函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1