Jun Wu, Dong Hyun Jo, Marcus Fruttiger, Jeong Hun Kim
{"title":"Cone cell dysfunction attenuates retinal neovascularization in oxygen-induced retinopathy mouse model","authors":"Jun Wu, Dong Hyun Jo, Marcus Fruttiger, Jeong Hun Kim","doi":"10.1002/jnr.25316","DOIUrl":null,"url":null,"abstract":"<p>Aberrant neovascularization is the most common feature in retinopathy of prematurity (ROP), which leads to the retinal detachment and visual defects in neonates with a low gestational age eventually. Understanding the regulation of inappropriate angiogenic signaling benefits individuals at-risk. Recently, neural activity originating from the specific neural activity has been considered to contribute to retinal angiogenesis. Here, we explored the impact of cone cell dysfunction on oxygen-induced retinopathy (OIR), a mouse model commonly employed to understand retinal diseases associated with abnormal blood vessel growth, using the <i>Gnat2</i><sup><i>cpfl3</i></sup> (cone photoreceptor function loss-3) strain of mice (regardless of the sex), which is known for its inherent cone cell dysfunction. We found that the retinal avascular area, hypoxic area, and neovascular area were significantly attenuated in <i>Gnat2</i><sup><i>cpfl3</i></sup> OIR mice compared to those in C57BL/6 OIR mice. Moreover, the HIF-1α/VEGF axis was also reduced in <i>Gnat2</i><sup><i>cpfl3</i></sup> OIR mice. Collectively, our results indicated that cone cell dysfunction, as observed in <i>Gnat2</i><sup><i>cpfl3</i></sup> OIR mice, leads to attenuated retinal neovascularization. This finding suggests that retinal neural activity may precede and potentially influence the onset of pathological neovascularization.</p>","PeriodicalId":16490,"journal":{"name":"Journal of Neuroscience Research","volume":"102 3","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnr.25316","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Aberrant neovascularization is the most common feature in retinopathy of prematurity (ROP), which leads to the retinal detachment and visual defects in neonates with a low gestational age eventually. Understanding the regulation of inappropriate angiogenic signaling benefits individuals at-risk. Recently, neural activity originating from the specific neural activity has been considered to contribute to retinal angiogenesis. Here, we explored the impact of cone cell dysfunction on oxygen-induced retinopathy (OIR), a mouse model commonly employed to understand retinal diseases associated with abnormal blood vessel growth, using the Gnat2cpfl3 (cone photoreceptor function loss-3) strain of mice (regardless of the sex), which is known for its inherent cone cell dysfunction. We found that the retinal avascular area, hypoxic area, and neovascular area were significantly attenuated in Gnat2cpfl3 OIR mice compared to those in C57BL/6 OIR mice. Moreover, the HIF-1α/VEGF axis was also reduced in Gnat2cpfl3 OIR mice. Collectively, our results indicated that cone cell dysfunction, as observed in Gnat2cpfl3 OIR mice, leads to attenuated retinal neovascularization. This finding suggests that retinal neural activity may precede and potentially influence the onset of pathological neovascularization.
期刊介绍:
The Journal of Neuroscience Research (JNR) publishes novel research results that will advance our understanding of the development, function and pathophysiology of the nervous system, using molecular, cellular, systems, and translational approaches. JNR covers both basic research and clinical aspects of neurology, neuropathology, psychiatry or psychology.
The journal focuses on uncovering the intricacies of brain structure and function. Research published in JNR covers all species from invertebrates to humans, and the reports inform the readers about the function and organization of the nervous system, with emphasis on how disease modifies the function and organization.