Osr1-mediated mesothelial transition of liver mesenchymal cells exacerbates fibrotic liver damage.

IF 12.1 1区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Molecular Therapy Pub Date : 2024-09-04 Epub Date: 2024-02-27 DOI:10.1016/j.ymthe.2024.02.024
Xinxin Nian, Pengyan Lin, Yunfei Bai, Donglin Yu, Xinyan Yang, Bin Zhou, Jie Gao, Yang Zhao
{"title":"Osr1-mediated mesothelial transition of liver mesenchymal cells exacerbates fibrotic liver damage.","authors":"Xinxin Nian, Pengyan Lin, Yunfei Bai, Donglin Yu, Xinyan Yang, Bin Zhou, Jie Gao, Yang Zhao","doi":"10.1016/j.ymthe.2024.02.024","DOIUrl":null,"url":null,"abstract":"<p><p>In chronic liver diseases, hepatic stellate cells (HSCs) are induced to form the myofibroblasts responsible for scar formation, leading to liver fibrosis and cirrhosis. Here, single-cell RNA sequencing with in vivo lineage tracing in nonalcoholic steatohepatitis (NASH) model mice reveals a subpopulation of HSCs transitioning back to a state resembling their developmental precursors, mesothelial cells (MCs), after liver injury. These damage-associated intermediates between HSCs and MCs (DIHMs) can be traced with a dual recombinase system by labeling Krt19-expressing cells within prelabeled Pdgfrb<sup>+</sup> HSCs, and DIHMs highly express inflammation- and fibrosis-associated genes. Cre and Dre-inducible depletion of DIHMs by administering diphtheria toxin reduces liver fibrosis and alleviates liver damage in NASH model mice. Importantly, knockdown of Osr1, a zinc finger transcription factor of the OSR gene family, can block DIHM induction in vitro. Conditional knockout Osr1 in Pdgfrb-expressing mesenchymal cells in NASH model mice can reduce liver fibrosis in vivo. Our study collectively uncovers an injury-induced developmental reversion process wherein HSCs undergo what we call a mesenchymal-to-mesothelial transition, which can be targeted to develop interventions to treat chronic liver diseases.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":null,"pages":null},"PeriodicalIF":12.1000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2024.02.024","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In chronic liver diseases, hepatic stellate cells (HSCs) are induced to form the myofibroblasts responsible for scar formation, leading to liver fibrosis and cirrhosis. Here, single-cell RNA sequencing with in vivo lineage tracing in nonalcoholic steatohepatitis (NASH) model mice reveals a subpopulation of HSCs transitioning back to a state resembling their developmental precursors, mesothelial cells (MCs), after liver injury. These damage-associated intermediates between HSCs and MCs (DIHMs) can be traced with a dual recombinase system by labeling Krt19-expressing cells within prelabeled Pdgfrb+ HSCs, and DIHMs highly express inflammation- and fibrosis-associated genes. Cre and Dre-inducible depletion of DIHMs by administering diphtheria toxin reduces liver fibrosis and alleviates liver damage in NASH model mice. Importantly, knockdown of Osr1, a zinc finger transcription factor of the OSR gene family, can block DIHM induction in vitro. Conditional knockout Osr1 in Pdgfrb-expressing mesenchymal cells in NASH model mice can reduce liver fibrosis in vivo. Our study collectively uncovers an injury-induced developmental reversion process wherein HSCs undergo what we call a mesenchymal-to-mesothelial transition, which can be targeted to develop interventions to treat chronic liver diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Osr1 介导的肝脏间充质细胞间皮细胞转化加剧了纤维化肝损伤。
在慢性肝病中,肝星状细胞(HSCs)被诱导形成负责瘢痕形成的肌成纤维细胞,导致肝纤维化和肝硬化。在这里,通过对非酒精性脂肪性肝炎(NASH)模型小鼠进行单细胞RNA测序和体内世系追踪,发现了肝损伤后转变回与其发育前体--间皮细胞(MC)相似状态的造血干细胞亚群。通过标记预标记Pdgfrb阳性造血干细胞内的Krt19表达细胞,可以用双重组酶系统追踪造血干细胞和间皮细胞(DIHMs)之间的这些损伤相关中间产物,DIHMs高度表达炎症和纤维化相关基因。通过注射白喉毒素,Cre和Dre诱导的DIHMs耗竭可减少NASH模型小鼠的肝纤维化并减轻肝损伤。重要的是,体外敲除OSR基因家族的锌指转录因子Osr1可以阻止DIHM的诱导。在NASH模型小鼠表达Pdgfrb的间充质细胞中有条件地敲除Osr1可减少体内肝纤维化。我们的研究共同揭示了一个损伤诱导的发育逆转过程,在这一过程中造血干细胞经历了我们所称的间充质向间皮细胞的转变(MMesoT),我们可以针对这一转变开发治疗慢性肝病的干预措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Therapy
Molecular Therapy 医学-生物工程与应用微生物
CiteScore
19.20
自引率
3.20%
发文量
357
审稿时长
3 months
期刊介绍: Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.
期刊最新文献
Engineering a solution for allogeneic CAR-T rejection. Targeting Rap1b signaling cascades with CDNF: Modulating Platelet Activation, Regulating Plasma Oxylipins and Mitigating Reperfusion Injury in stroke. A CD25×TIGIT bispecific antibody induces anti-tumor activity through selective intratumoral Treg cell depletion. A chimeric anti-inflammatory and anti-vascularization immunomodulator prevents high-risk corneal transplantation rejection via ex vivo gene therapy. Case study of CD19-directed chimeric antigen receptor T-cell therapy in a subject with immune-mediate necrotizing myopathy treated in the RESET-Myositis™ phase I/II trial.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1