A closer look at some new lower bounds on the minimum singular value of a matrix

Avleen Kaur , S.H. Lui
{"title":"A closer look at some new lower bounds on the minimum singular value of a matrix","authors":"Avleen Kaur ,&nbsp;S.H. Lui","doi":"10.1016/j.exco.2024.100142","DOIUrl":null,"url":null,"abstract":"<div><p>There is an extensive body of literature on estimating the eigenvalues of the sum of two symmetric matrices, <span><math><mrow><mi>P</mi><mo>+</mo><mi>Q</mi></mrow></math></span>, in relation to the eigenvalues of <span><math><mi>P</mi></math></span> and <span><math><mi>Q</mi></math></span>. Recently, the authors introduced two novel lower bounds on the minimum eigenvalue, <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mo>min</mo></mrow></msub><mrow><mo>(</mo><mi>P</mi><mo>+</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span>, under the conditions that matrices <span><math><mi>P</mi></math></span> and <span><math><mi>Q</mi></math></span> are symmetric positive semi-definite and their sum <span><math><mrow><mi>P</mi><mo>+</mo><mi>Q</mi></mrow></math></span> is non-singular. These bounds rely on the Friedrichs angle between the range spaces of matrices <span><math><mi>P</mi></math></span> and <span><math><mi>Q</mi></math></span>, which are denoted by <span><math><mrow><mi>R</mi><mrow><mo>(</mo><mi>P</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>R</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span>, respectively. In addition, both results led to the derivation of several new lower bounds on the minimum singular value of full-rank matrices. One significant aspect of the two novel lower bounds on <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mo>min</mo></mrow></msub><mrow><mo>(</mo><mi>P</mi><mo>+</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span> is the distinction of the case where <span><math><mrow><mi>R</mi><mrow><mo>(</mo><mi>P</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>R</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span> have no principal angles between 0 and <span><math><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>. This work offers an explanation for the aforementioned scenario and presents a classification of all matrices that meet the specified criteria. Additionally, we offer insight into the rationale behind selecting the decomposition for the subspace <span><math><mrow><mi>R</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span>, which is employed to formulate the lower bounds for <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mo>min</mo></mrow></msub><mrow><mo>(</mo><mi>P</mi><mo>+</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span>. At last, an example that showcases the potential for improving these two lower bounds is presented.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"5 ","pages":"Article 100142"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X24000089/pdfft?md5=0c2ae22f7c329a636b6ee13795d2840d&pid=1-s2.0-S2666657X24000089-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X24000089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

There is an extensive body of literature on estimating the eigenvalues of the sum of two symmetric matrices, P+Q, in relation to the eigenvalues of P and Q. Recently, the authors introduced two novel lower bounds on the minimum eigenvalue, λmin(P+Q), under the conditions that matrices P and Q are symmetric positive semi-definite and their sum P+Q is non-singular. These bounds rely on the Friedrichs angle between the range spaces of matrices P and Q, which are denoted by R(P) and R(Q), respectively. In addition, both results led to the derivation of several new lower bounds on the minimum singular value of full-rank matrices. One significant aspect of the two novel lower bounds on λmin(P+Q) is the distinction of the case where R(P) and R(Q) have no principal angles between 0 and π2. This work offers an explanation for the aforementioned scenario and presents a classification of all matrices that meet the specified criteria. Additionally, we offer insight into the rationale behind selecting the decomposition for the subspace R(Q), which is employed to formulate the lower bounds for λmin(P+Q). At last, an example that showcases the potential for improving these two lower bounds is presented.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
细看矩阵最小奇异值的一些新下限
最近,作者提出了两个关于最小特征值 λmin(P+Q) 的新下限,条件是矩阵 P 和 Q 是对称正半有穷数,并且它们的和 P+Q 是非奇异值。这些界限依赖于矩阵 P 和 Q 的范围空间之间的弗里德里希角,分别用 R(P) 和 R(Q) 表示。此外,这两个结果还推导出了全秩矩阵最小奇异值的几个新下界。关于 λmin(P+Q) 的两个新下界的一个重要方面是区分了 R(P) 和 R(Q) 在 0 和 π2 之间没有主角的情况。本研究对上述情况进行了解释,并对符合特定标准的所有矩阵进行了分类。此外,我们还深入探讨了为子空间 R(Q) 选择分解方法的原理,并利用该分解方法制定了 λmin(P+Q) 的下限。最后,我们将举例说明改进这两个下界的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
期刊最新文献
Automation of image processing through ML algorithms of GRASS GIS using embedded Scikit-Learn library of Python Counterexamples for your calculus course Hölder’s inequality for shifted quantum integral operator Solving change of basis from Bernstein to Chebyshev polynomials Asymptotic behavior of the empirical checkerboard copula process for binary data: An educational presentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1