DOA Estimation With Nested Arrays in Impulsive Noise Scenario: An Adaptive Order Moment Strategy

IF 2.9 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE open journal of signal processing Pub Date : 2024-01-31 DOI:10.1109/OJSP.2024.3360896
Xudong Dong;Jun Zhao;Jingjing Pan;Meng Sun;Xiaofei Zhang;Peihao Dong;Yide Wang
{"title":"DOA Estimation With Nested Arrays in Impulsive Noise Scenario: An Adaptive Order Moment Strategy","authors":"Xudong Dong;Jun Zhao;Jingjing Pan;Meng Sun;Xiaofei Zhang;Peihao Dong;Yide Wang","doi":"10.1109/OJSP.2024.3360896","DOIUrl":null,"url":null,"abstract":"Most of the existing direction of arrival (DOA) estimation methods in impulsive noise scenario are based on the fractional low-order moment statistics (FLOSs), such as the robust covariation-based (ROC), fractional low-order moment (FLOM), and phased fractional low-order moment (PFLOM). However, an unknown order moment parameter \n<inline-formula><tex-math>$p$</tex-math></inline-formula>\n needs to be selected in these approaches, which inevitably increases the computational load if the optimal value of the parameter \n<inline-formula><tex-math>$p$</tex-math></inline-formula>\n is determined by a large number of Monte Carlo experiments. To address this issue, we propose the adaptive order moment function (AOMF) and improved AOMF (IAOMF), which are applicable to the existing FLOSs-based methods and can also be extended to the case of sparse arrays. Moreover, we analyze the performance of AOMF and IAOMF, and simulation experiments verify the effectiveness of proposed methods.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"5 ","pages":"493-502"},"PeriodicalIF":2.9000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10417125","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of signal processing","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10417125/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Most of the existing direction of arrival (DOA) estimation methods in impulsive noise scenario are based on the fractional low-order moment statistics (FLOSs), such as the robust covariation-based (ROC), fractional low-order moment (FLOM), and phased fractional low-order moment (PFLOM). However, an unknown order moment parameter $p$ needs to be selected in these approaches, which inevitably increases the computational load if the optimal value of the parameter $p$ is determined by a large number of Monte Carlo experiments. To address this issue, we propose the adaptive order moment function (AOMF) and improved AOMF (IAOMF), which are applicable to the existing FLOSs-based methods and can also be extended to the case of sparse arrays. Moreover, we analyze the performance of AOMF and IAOMF, and simulation experiments verify the effectiveness of proposed methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脉冲噪声场景下嵌套阵列的 DOA 估计:自适应阶矩策略
现有的脉冲噪声场景下的到达方向(DOA)估计方法大多基于分数低阶矩统计(FLOS),如基于鲁棒协方差(ROC)、分数低阶矩(FLOM)和相位分数低阶矩(PFLOM)。然而,在这些方法中,需要选择一个未知的阶矩参数 $p$,如果参数 $p$ 的最优值是通过大量蒙特卡罗实验确定的,则不可避免地会增加计算负荷。为了解决这个问题,我们提出了自适应阶矩函数(AOMF)和改进的自适应阶矩函数(IAOMF),它们适用于现有的基于 FLOSs 的方法,也可以扩展到稀疏阵列的情况。此外,我们还分析了 AOMF 和 IAOMF 的性能,并通过仿真实验验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
审稿时长
22 weeks
期刊最新文献
Robustifying Routers Against Input Perturbations for Sparse Mixture-of-Experts Vision Transformers Task Nuisance Filtration for Unsupervised Domain Adaptation SMITIN: Self-Monitored Inference-Time INtervention for Generative Music Transformers Non-Gaussian Process Dynamical Models Online Learning of Expanding Graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1