In Vitro Effects of Silver Nanoparticles on Pathogenic Bacteria and on Metabolic Activity and Viability of Human Mesenchymal Stem Cells.

IF 2.9 4区 医学 Q3 IMMUNOLOGY Archivum Immunologiae et Therapiae Experimentalis Pub Date : 2024-02-29 eCollection Date: 2024-01-01 DOI:10.2478/aite-2024-0007
Maja Ptasiewicz, Renata Chałas, Joanna Idaszek, Paweł Maksymiuk, Mateusz Kister, Karolina A Kister, Krzysztof J Kurzydłowski, Agnieszka Magryś
{"title":"<i>In Vitro</i> Effects of Silver Nanoparticles on Pathogenic Bacteria and on Metabolic Activity and Viability of Human Mesenchymal Stem Cells.","authors":"Maja Ptasiewicz, Renata Chałas, Joanna Idaszek, Paweł Maksymiuk, Mateusz Kister, Karolina A Kister, Krzysztof J Kurzydłowski, Agnieszka Magryś","doi":"10.2478/aite-2024-0007","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid development of nanotechnology has led to the use of silver nanoparticles (Ag-NPs) in various biomedical fields. However, the effect of Ag-NPs on human mesenchymal stem cells (hMSCs) is not fully understood. Moreover, too frequent an exposure to products containing nanosilver in sublethal amounts raises widespread concerns that it will lead to the development of silver-resistant microorganisms. Therefore, this study aimed to evaluate the mechanism of action of Ag-NPs on hMSCs by analyzing the cellular uptake of Ag-NPs by the cells and its effect on their viability and to assess antimicrobial activity of Ag-NPs against emerging bacterial strains, including multidrug-resistant pathogens. For metabolic activity and viability evaluation, hMSCs were incubated with different concentrations of Ag-NPs (14 μg/mL, 7 μg/mL, and 3.5 μg/mL) for 10 min., 1 h and 24 h and subsequently analyzed for their viability by live-dead staining and metabolic activity by the MTS assay. The effect of Ag-NPs on bacterial pathogens was studied by determining their minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). In conclusion, it was observed that exposure of hMSCs to Ag-NPs of size <10 nm has no cytotoxic effect on the metabolic activity of the cells at the concentration of 3.5 μg/mL, with minimal cytotoxic effect being observed at the concentration of 14 μg/mL after 24 h of incubation. Our findings also confirmed that Ag-NPs at the concentration of 4 μg/mL are effective broad-spectrum bactericidal agents, regardless of the antibiotic-resistance mechanism present in bacteria.</p>","PeriodicalId":8389,"journal":{"name":"Archivum Immunologiae et Therapiae Experimentalis","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archivum Immunologiae et Therapiae Experimentalis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2478/aite-2024-0007","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid development of nanotechnology has led to the use of silver nanoparticles (Ag-NPs) in various biomedical fields. However, the effect of Ag-NPs on human mesenchymal stem cells (hMSCs) is not fully understood. Moreover, too frequent an exposure to products containing nanosilver in sublethal amounts raises widespread concerns that it will lead to the development of silver-resistant microorganisms. Therefore, this study aimed to evaluate the mechanism of action of Ag-NPs on hMSCs by analyzing the cellular uptake of Ag-NPs by the cells and its effect on their viability and to assess antimicrobial activity of Ag-NPs against emerging bacterial strains, including multidrug-resistant pathogens. For metabolic activity and viability evaluation, hMSCs were incubated with different concentrations of Ag-NPs (14 μg/mL, 7 μg/mL, and 3.5 μg/mL) for 10 min., 1 h and 24 h and subsequently analyzed for their viability by live-dead staining and metabolic activity by the MTS assay. The effect of Ag-NPs on bacterial pathogens was studied by determining their minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). In conclusion, it was observed that exposure of hMSCs to Ag-NPs of size <10 nm has no cytotoxic effect on the metabolic activity of the cells at the concentration of 3.5 μg/mL, with minimal cytotoxic effect being observed at the concentration of 14 μg/mL after 24 h of incubation. Our findings also confirmed that Ag-NPs at the concentration of 4 μg/mL are effective broad-spectrum bactericidal agents, regardless of the antibiotic-resistance mechanism present in bacteria.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
银纳米颗粒对致病细菌以及人类间充质干细胞代谢活性和活力的体外效应。
随着纳米技术的快速发展,银纳米粒子(Ag-NPs)被广泛应用于各种生物医学领域。然而,Ag-NPs 对人类间充质干细胞(hMSCs)的影响尚不完全清楚。此外,过于频繁地接触含有亚致死量纳米银的产品会引起人们的广泛担忧,担心这会导致耐银微生物的发展。因此,本研究旨在通过分析细胞对 Ag-NPs 的吸收及其对细胞活力的影响来评估 Ag-NPs 对 hMSCs 的作用机制,并评估 Ag-NPs 对新出现的细菌菌株(包括耐多药病原体)的抗菌活性。为了评估新陈代谢活性和存活率,将 hMSCs 与不同浓度的 Ag-NPs(14 μg/mL、7 μg/mL 和 3.5 μg/mL)孵育 10 分钟、1 小时和 24 小时,然后用活死细胞染色法分析其存活率,用 MTS 法分析其新陈代谢活性。通过测定最低抑菌浓度(MIC)和最低杀菌浓度(MBC),研究了 Ag-NPs 对细菌病原体的影响。总之,研究发现,将 hMSCs 暴露于大小为
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: Archivum Immunologiae et Therapiae Experimentalis (AITE), founded in 1953 by Ludwik Hirszfeld, is a bimonthly, multidisciplinary journal. It publishes reviews and full original papers dealing with immunology, experimental therapy, immunogenetics, transplantation, microbiology, immunochemistry and ethics in science.
期刊最新文献
S-Adenosylmethionine Treatment Diminishes the Proliferation of Castration-Resistant Prostate Cancer Cells by Modulating the Expression of miRNAs. Novel Insight into Inflammatory Pathways in Acute Pulmonary Embolism in Humans. S-Adenosylmethionine Inhibits the Proliferation of Retinoblastoma Cell Y79, Induces Apoptosis and Cell Cycle Arrest of Y79 Cells by Inhibiting the Wnt2/β-Catenin Pathway. Apoptosis Regulation in Dental Pulp Cells and PD-1/PD-L1 Expression Dynamics Under Ozone Exposure - A Pilot Approach. Endothelial Activation and Stress Index Score as a Prognostic Factor of Cytokine Release Syndrome in CAR-T Patients - A Retrospective Analysis of Multiple Myeloma and Large B-Cell Lymphoma Cohorts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1