Sergio Pérez-Oliveira, Juan Castilla-Silgado, Cèlia Painous, Iban Aldecoa, Manuel Menéndez-González, Marta Blázquez-Estrada, Daniela Corte, Cristina Tomás-Zapico, Yaroslau Compta, Esteban Muñoz, Albert Lladó, Mircea Balasa, Gemma Aragonès, Pablo García-González, Maitée Rosende-Roca, Mercè Boada, Agustín Ruíz, Pau Pastor, Beatriz De la Casa-Fages, Alberto Rabano, Raquel Sánchez-Valle, Laura Molina-Porcel, Victoria Álvarez
{"title":"Huntingtin CAG repeats in neuropathologically confirmed tauopathies: Novel insights","authors":"Sergio Pérez-Oliveira, Juan Castilla-Silgado, Cèlia Painous, Iban Aldecoa, Manuel Menéndez-González, Marta Blázquez-Estrada, Daniela Corte, Cristina Tomás-Zapico, Yaroslau Compta, Esteban Muñoz, Albert Lladó, Mircea Balasa, Gemma Aragonès, Pablo García-González, Maitée Rosende-Roca, Mercè Boada, Agustín Ruíz, Pau Pastor, Beatriz De la Casa-Fages, Alberto Rabano, Raquel Sánchez-Valle, Laura Molina-Porcel, Victoria Álvarez","doi":"10.1111/bpa.13250","DOIUrl":null,"url":null,"abstract":"<p>Previous studies have suggested a relationship between the number of CAG triplet repeats in the <i>HTT</i> gene and neurodegenerative diseases not related to Huntington's disease (HD). This study seeks to investigate whether the number of CAG repeats of <i>HTT</i> is associated with the risk of developing certain tauopathies and its influence as a modulator of the clinical and neuropathological phenotype. Additionally, it aims to evaluate the potential of polyglutamine staining as a neuropathological screening. We genotyped the <i>HTT</i> gene CAG repeat number and APOE-ℰ isoforms in a cohort of patients with neuropathological diagnoses of tauopathies (<i>n</i>=588), including 34 corticobasal degeneration (CBD), 98 progressive supranuclear palsy (PSP) and 456 Alzheimer's disease (AD). Furthermore, we genotyped a control group of 1070 patients, of whom 44 were neuropathologic controls. We identified significant differences in the number of patients with pathological <i>HTT</i> expansions in the CBD group (2.7%) and PSP group (3.2%) compared to control subjects (0.2%). A significant increase in the size of the <i>HTT</i> CAG repeats was found in the AD compared to the control group, influenced by the presence of the Apoliprotein E (APOE)-ℰ4 isoform. Post-mortem assessments uncovered tauopathy pathology with positive polyglutamine aggregates, with a slight predominance in the neostriatum for PSP and CBD cases and somewhat greater limbic involvement in the AD case. Our results indicated a link between <i>HTT</i> CAG repeat expansion with other non-HD pathology, suggesting they could share common neurodegenerative pathways. These findings support that genetic or histological screening for <i>HTT</i> repeat expansions should be considered in tauopathies.</p>","PeriodicalId":9290,"journal":{"name":"Brain Pathology","volume":"34 4","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bpa.13250","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Pathology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bpa.13250","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Previous studies have suggested a relationship between the number of CAG triplet repeats in the HTT gene and neurodegenerative diseases not related to Huntington's disease (HD). This study seeks to investigate whether the number of CAG repeats of HTT is associated with the risk of developing certain tauopathies and its influence as a modulator of the clinical and neuropathological phenotype. Additionally, it aims to evaluate the potential of polyglutamine staining as a neuropathological screening. We genotyped the HTT gene CAG repeat number and APOE-ℰ isoforms in a cohort of patients with neuropathological diagnoses of tauopathies (n=588), including 34 corticobasal degeneration (CBD), 98 progressive supranuclear palsy (PSP) and 456 Alzheimer's disease (AD). Furthermore, we genotyped a control group of 1070 patients, of whom 44 were neuropathologic controls. We identified significant differences in the number of patients with pathological HTT expansions in the CBD group (2.7%) and PSP group (3.2%) compared to control subjects (0.2%). A significant increase in the size of the HTT CAG repeats was found in the AD compared to the control group, influenced by the presence of the Apoliprotein E (APOE)-ℰ4 isoform. Post-mortem assessments uncovered tauopathy pathology with positive polyglutamine aggregates, with a slight predominance in the neostriatum for PSP and CBD cases and somewhat greater limbic involvement in the AD case. Our results indicated a link between HTT CAG repeat expansion with other non-HD pathology, suggesting they could share common neurodegenerative pathways. These findings support that genetic or histological screening for HTT repeat expansions should be considered in tauopathies.
期刊介绍:
Brain Pathology is the journal of choice for biomedical scientists investigating diseases of the nervous system. The official journal of the International Society of Neuropathology, Brain Pathology is a peer-reviewed quarterly publication that includes original research, review articles and symposia focuses on the pathogenesis of neurological disease.