Potent lung tumor promotion by inhaled MWCNT.

IF 3.6 3区 医学 Q3 NANOSCIENCE & NANOTECHNOLOGY Nanotoxicology Pub Date : 2024-02-01 Epub Date: 2024-02-29 DOI:10.1080/17435390.2024.2314473
Dale W Porter, Marlene S Orandle, Ann Hubbs, Lauren M Staska, David Lowry, Michael Kashon, Michael G Wolfarth, Walter McKinney, Linda M Sargent
{"title":"Potent lung tumor promotion by inhaled MWCNT.","authors":"Dale W Porter, Marlene S Orandle, Ann Hubbs, Lauren M Staska, David Lowry, Michael Kashon, Michael G Wolfarth, Walter McKinney, Linda M Sargent","doi":"10.1080/17435390.2024.2314473","DOIUrl":null,"url":null,"abstract":"<p><p>In the lung, carcinogenesis is a multi-stage process that includes initiation by a genotoxic agent, promotion that expands the population of cells with damaged DNA to form a tumor, and progression from benign to malignant neoplasms. We have previously shown that Mitsui-7, a long and rigid multi-walled carbon nanotube (MWCNT), promotes pulmonary carcinogenesis in a mouse model. To investigate the potential exposure threshold and dose-response for tumor promotion by this MWCNT, 3-methylcholanthrene (MC) initiated (10 μg/g, i.p., once) or vehicle (corn oil) treated B6C3F1 mice were exposed by inhalation to filtered air or MWCNT (5 mg/m<sup>3</sup>) for 5 h/day for 0, 2, 5, or 10 days and were followed for 17 months post-exposure for evidence of lung tumors. Pulmonary neoplasia incidence in MC-initiated mice significantly increased with each MWCNT exposure duration. Exposure to either MC or MWCNT alone did not affect pulmonary neoplasia incidence compared with vehicle controls. Lung tumor multiplicity in MC-initiated mice also significantly increased with each MWCNT exposure duration. Thus, a significantly higher lung tumor multiplicity was observed after a 10-day MWCNT exposure than following a 2-day exposure. Both bronchioloalveolar adenoma and bronchioloalveolar adenocarcinoma multiplicity in MC-initiated mice were significantly increased following 5- and 10-day MWCNT exposure, while a 2-day MWCNT exposure in MC-initiated mice significantly increased the multiplicity of adenomas but not adenocarcinomas. In this study, even the lowest MWCNT exposure promoted lung tumors in MC-initiated mice. Our findings indicate that exposure to this MWCNT strongly promotes pulmonary carcinogenesis.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":" ","pages":"69-86"},"PeriodicalIF":3.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11057902/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17435390.2024.2314473","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In the lung, carcinogenesis is a multi-stage process that includes initiation by a genotoxic agent, promotion that expands the population of cells with damaged DNA to form a tumor, and progression from benign to malignant neoplasms. We have previously shown that Mitsui-7, a long and rigid multi-walled carbon nanotube (MWCNT), promotes pulmonary carcinogenesis in a mouse model. To investigate the potential exposure threshold and dose-response for tumor promotion by this MWCNT, 3-methylcholanthrene (MC) initiated (10 μg/g, i.p., once) or vehicle (corn oil) treated B6C3F1 mice were exposed by inhalation to filtered air or MWCNT (5 mg/m3) for 5 h/day for 0, 2, 5, or 10 days and were followed for 17 months post-exposure for evidence of lung tumors. Pulmonary neoplasia incidence in MC-initiated mice significantly increased with each MWCNT exposure duration. Exposure to either MC or MWCNT alone did not affect pulmonary neoplasia incidence compared with vehicle controls. Lung tumor multiplicity in MC-initiated mice also significantly increased with each MWCNT exposure duration. Thus, a significantly higher lung tumor multiplicity was observed after a 10-day MWCNT exposure than following a 2-day exposure. Both bronchioloalveolar adenoma and bronchioloalveolar adenocarcinoma multiplicity in MC-initiated mice were significantly increased following 5- and 10-day MWCNT exposure, while a 2-day MWCNT exposure in MC-initiated mice significantly increased the multiplicity of adenomas but not adenocarcinomas. In this study, even the lowest MWCNT exposure promoted lung tumors in MC-initiated mice. Our findings indicate that exposure to this MWCNT strongly promotes pulmonary carcinogenesis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
吸入 MWCNT 可有效促进肺部肿瘤生长。
在肺部,癌变是一个多阶段的过程,包括由基因毒性物质引发、促进DNA受损细胞群的扩大以形成肿瘤,以及从良性肿瘤发展为恶性肿瘤。我们曾在小鼠模型中发现,长而坚硬的多壁碳纳米管(MWCNT)Mitsui-7 会促进肺癌的发生。为了研究这种多壁碳纳米管促进肿瘤的潜在暴露阈值和剂量反应,我们通过吸入过滤空气或多壁碳纳米管(5 毫克/立方米),每天 5 小时,分别暴露于 3-甲基胆蒽(MC)(10 微克/克,静脉注射,一次)或载体(玉米油)处理的 B6C3F1 小鼠,暴露时间为 0、2、5 或 10 天,暴露后跟踪观察 17 个月,以观察肺肿瘤的证据。随着接触 MWCNT 时间的延长,MC 引发的小鼠肺肿瘤发病率显著增加。与车辆对照组相比,单独暴露于 MC 或 MWCNT 不会影响肺肿瘤发病率。MC 引发的小鼠的肺肿瘤复发率也随着每个 MWCNT 暴露持续时间的延长而显著增加。因此,与暴露 2 天的小鼠相比,暴露 10 天的小鼠肺肿瘤复发率明显更高。MC 引发的小鼠在暴露 5 天和 10 天 MWCNT 后,支气管肺泡腺瘤和支气管肺泡腺癌的复发率都显著增加,而 MC 引发的小鼠暴露 2 天 MWCNT 后,腺瘤的复发率显著增加,但腺癌的复发率没有增加。在这项研究中,即使最低的 MWCNT 暴露也会促进 MC 引发的小鼠肺部肿瘤的发生。我们的研究结果表明,暴露于这种 MWCNT 会强烈促进肺癌的发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanotoxicology
Nanotoxicology 医学-毒理学
CiteScore
10.10
自引率
4.00%
发文量
45
审稿时长
3.5 months
期刊介绍: Nanotoxicology invites contributions addressing research relating to the potential for human and environmental exposure, hazard and risk associated with the use and development of nano-structured materials. In this context, the term nano-structured materials has a broad definition, including ‘materials with at least one dimension in the nanometer size range’. These nanomaterials range from nanoparticles and nanomedicines, to nano-surfaces of larger materials and composite materials. The range of nanomaterials in use and under development is extremely diverse, so this journal includes a range of materials generated for purposeful delivery into the body (food, medicines, diagnostics and prosthetics), to consumer products (e.g. paints, cosmetics, electronics and clothing), and particles designed for environmental applications (e.g. remediation). It is the nano-size range if these materials which unifies them and defines the scope of Nanotoxicology . While the term ‘toxicology’ indicates risk, the journal Nanotoxicology also aims to encompass studies that enhance safety during the production, use and disposal of nanomaterials. Well-controlled studies demonstrating a lack of exposure, hazard or risk associated with nanomaterials, or studies aiming to improve biocompatibility are welcomed and encouraged, as such studies will lead to an advancement of nanotechnology. Furthermore, many nanoparticles are developed with the intention to improve human health (e.g. antimicrobial agents), and again, such articles are encouraged. In order to promote quality, Nanotoxicology will prioritise publications that have demonstrated characterisation of the nanomaterials investigated.
期刊最新文献
Protective effects of quercetin on intestinal barrier and cellular viability against silver nanoparticle exposure: insights from an intestinal co-culture model. Modulating exosomal communication between macrophages and melanoma cancer cells via cyclodextrin-based nanosponges loaded with doxorubicin. Investigation of potential cytotoxicity of a water-soluble, red-fluorescent [70]fullerene nanomaterial in Drosophila melanogaster. On how titanium dioxide nanoparticles attenuate the toxicity of mercuric chloride to Artemia salina: investigation of fatty acid composition, oxidative stress, and lipid peroxidation. Plastic nanoparticle toxicity is accentuated in the immune-competent inflamed intestinal tri-culture cell model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1