{"title":"Molecular insights into nanoplastics-peptides binding and their interactions with the lipid membrane","authors":"Arianna Vismara, Alfonso Gautieri","doi":"10.1016/j.bpc.2024.107213","DOIUrl":null,"url":null,"abstract":"<div><p>Micro- and nanoplastics have become a significant concern, due to their ubiquitous presence in the environment. These particles can be internalized by the human body through ingestion, inhalation, or dermal contact, and then they can interact with environmental or biological molecules, such as proteins, resulting in the formation of the protein corona. However, information on the role of protein corona in the human body is still missing. Coarse-grain models of the nanoplastics and pentapeptides were created and simulated at the microscale to study the role of protein corona. Additionally, a lipid bilayer coarse-grain model was reproduced to investigate the behavior of the coronated nanoplastics in proximity of a lipid bilayer. Hydrophobic and aromatic amino acids have a high tendency to create stable bonds with all nanoplastics. Moreover, polystyrene and polypropylene establish bonds with polar and charged amino acids. When the coronated nanoplastics are close to a lipid bilayer, different behaviors can be observed. Polyethylene creates a single polymeric chain, while polypropylene tends to break down into its single chains. Polystyrene can both separate into its individual chains and remain aggregated. The protein corona plays an important role when interacting with the nanoplastics and the lipid membrane. More studies are needed to validate the results and to enhance the complexity of the systems.</p></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"308 ","pages":"Article 107213"},"PeriodicalIF":3.3000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0301462224000425/pdfft?md5=56ba4531afec9f8f82cd5b55d8b8820a&pid=1-s2.0-S0301462224000425-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301462224000425","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Micro- and nanoplastics have become a significant concern, due to their ubiquitous presence in the environment. These particles can be internalized by the human body through ingestion, inhalation, or dermal contact, and then they can interact with environmental or biological molecules, such as proteins, resulting in the formation of the protein corona. However, information on the role of protein corona in the human body is still missing. Coarse-grain models of the nanoplastics and pentapeptides were created and simulated at the microscale to study the role of protein corona. Additionally, a lipid bilayer coarse-grain model was reproduced to investigate the behavior of the coronated nanoplastics in proximity of a lipid bilayer. Hydrophobic and aromatic amino acids have a high tendency to create stable bonds with all nanoplastics. Moreover, polystyrene and polypropylene establish bonds with polar and charged amino acids. When the coronated nanoplastics are close to a lipid bilayer, different behaviors can be observed. Polyethylene creates a single polymeric chain, while polypropylene tends to break down into its single chains. Polystyrene can both separate into its individual chains and remain aggregated. The protein corona plays an important role when interacting with the nanoplastics and the lipid membrane. More studies are needed to validate the results and to enhance the complexity of the systems.
期刊介绍:
Biophysical Chemistry publishes original work and reviews in the areas of chemistry and physics directly impacting biological phenomena. Quantitative analysis of the properties of biological macromolecules, biologically active molecules, macromolecular assemblies and cell components in terms of kinetics, thermodynamics, spatio-temporal organization, NMR and X-ray structural biology, as well as single-molecule detection represent a major focus of the journal. Theoretical and computational treatments of biomacromolecular systems, macromolecular interactions, regulatory control and systems biology are also of interest to the journal.