Solving differential-algebraic equations in power system dynamic analysis with quantum computing

Huynh T. T. Tran, Hieu T. Nguyen, Long T. Vu, Samuel T. Ojetola
{"title":"Solving differential-algebraic equations in power system dynamic analysis with quantum computing","authors":"Huynh T. T. Tran,&nbsp;Hieu T. Nguyen,&nbsp;Long T. Vu,&nbsp;Samuel T. Ojetola","doi":"10.1049/enc2.12107","DOIUrl":null,"url":null,"abstract":"<p>Power system dynamics are generally modeled by high dimensional nonlinear differential-algebraic equations (DAEs) given a large number of components forming the network. These DAEs' complexity can grow exponentially due to the increasing penetration of distributed energy resources, whereas their computation time becomes sensitive due to the increasing interconnection of the power grid with other energy systems. This paper demonstrates the use of quantum computing algorithms to solve DAEs for power system dynamic analysis. We leverage a symbolic programming framework to equivalently convert the power system's DAEs into ordinary differential equations (ODEs) using index reduction methods and then encode their data into qubits using amplitude encoding. The system nonlinearity is captured by Hamiltonian simulation with truncated Taylor expansion so that state variables can be updated by a quantum linear equation solver. Our results show that quantum computing can solve the power system's DAEs accurately with a computational complexity polynomial in the logarithm of the system dimension. We also illustrate the use of recent advanced tools in scientific machine learning for implementing complex computing concepts, that is, Taylor expansion, DAEs/ODEs transformation, and quantum computing solver with abstract representation for power engineering applications.</p>","PeriodicalId":100467,"journal":{"name":"Energy Conversion and Economics","volume":"5 1","pages":"40-53"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/enc2.12107","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Economics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/enc2.12107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Power system dynamics are generally modeled by high dimensional nonlinear differential-algebraic equations (DAEs) given a large number of components forming the network. These DAEs' complexity can grow exponentially due to the increasing penetration of distributed energy resources, whereas their computation time becomes sensitive due to the increasing interconnection of the power grid with other energy systems. This paper demonstrates the use of quantum computing algorithms to solve DAEs for power system dynamic analysis. We leverage a symbolic programming framework to equivalently convert the power system's DAEs into ordinary differential equations (ODEs) using index reduction methods and then encode their data into qubits using amplitude encoding. The system nonlinearity is captured by Hamiltonian simulation with truncated Taylor expansion so that state variables can be updated by a quantum linear equation solver. Our results show that quantum computing can solve the power system's DAEs accurately with a computational complexity polynomial in the logarithm of the system dimension. We also illustrate the use of recent advanced tools in scientific machine learning for implementing complex computing concepts, that is, Taylor expansion, DAEs/ODEs transformation, and quantum computing solver with abstract representation for power engineering applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用量子计算求解电力系统动态分析中的微分代数方程
鉴于构成网络的组件数量众多,电力系统动态一般由高维非线性微分代数方程(DAE)建模。由于分布式能源资源的渗透率越来越高,这些 DAE 的复杂性可能会呈指数级增长,而由于电网与其他能源系统的互联程度越来越高,这些 DAE 的计算时间也变得越来越敏感。本文展示了使用量子计算算法求解电力系统动态分析中的 DAE。我们利用符号编程框架,使用索引还原方法将电力系统的 DAE 等效转换为常微分方程 (ODE),然后使用振幅编码将其数据编码为量子比特。通过截断泰勒展开的哈密顿模拟来捕捉系统的非线性,这样状态变量就可以通过量子线性方程求解器进行更新。我们的研究结果表明,量子计算可以精确求解电力系统的 DAEs,计算复杂度为系统维数的对数。我们还说明了如何利用科学机器学习领域最新的先进工具来实现复杂的计算概念,即泰勒展开、DAE/ODEs 变换和具有电力工程应用抽象表示的量子计算求解器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel online reinforcement learning-based linear quadratic regulator for three-level neutral-point clamped DC/AC inverter Artificial intelligence-driven insights: Precision tracking of power plant carbon emissions using satellite data Forecasting masked-load with invisible distributed energy resources based on transfer learning and Bayesian tuning Collaborative deployment of multiple reinforcement methods for network-loss reduction in distribution system with seasonal loads State-of-health estimation of lithium-ion batteries: A comprehensive literature review from cell to pack levels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1