Robust Magnetoelectric Coupling in FeTiO3/Ga2O3 Non-van der Waals Heterostructures

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry Letters Pub Date : 2024-02-29 DOI:10.1021/acs.jpclett.4c00029
Cui Jin, Xiao Tang, Qilong Sun, Chenxi Mu, Arkady V. Krasheninnikov and Liangzhi Kou*, 
{"title":"Robust Magnetoelectric Coupling in FeTiO3/Ga2O3 Non-van der Waals Heterostructures","authors":"Cui Jin,&nbsp;Xiao Tang,&nbsp;Qilong Sun,&nbsp;Chenxi Mu,&nbsp;Arkady V. Krasheninnikov and Liangzhi Kou*,&nbsp;","doi":"10.1021/acs.jpclett.4c00029","DOIUrl":null,"url":null,"abstract":"<p >Magnetoelectric coupling represents a significant breakthrough for next-generation electronics, offering the ability to achieve nonvolatile magnetic control via electrical means. In this comprehensive investigation, leveraging first-principles calculations, we unveil a robust magnetoelectric coupling within multiferroic heterostructures (HSs) by ingeniously integrating a non-van der Waals (non-vdW) magnetic FeTiO<sub>3</sub> monolayer with the ferroelectric (FE) Ga<sub>2</sub>O<sub>3</sub>. Diverging from conventional van der Waals (vdW) multiferroic HSs, the magnetic states of the FeTiO<sub>3</sub> monolayer can be efficiently toggled between ferromagnetic (FM) and antiferromagnetic (AFM) configurations by reversing the polarization of the Ga<sub>2</sub>O<sub>3</sub> monolayer. This intriguing phenomenon arises from polarization-dependent substantial interlayer electron transfers and the interplay between superexchange and direct-exchange magnetic couplings of the iron atoms. The carrier-mediated interfacial interactions induce crucial shifts in Fermi level positions, decisively imparting distinct electronic characteristics near the Fermi level of composite systems. These novel findings offer exciting prospects for the future of magnetoelectric technology.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"15 10","pages":"2650–2657"},"PeriodicalIF":4.8000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.4c00029","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetoelectric coupling represents a significant breakthrough for next-generation electronics, offering the ability to achieve nonvolatile magnetic control via electrical means. In this comprehensive investigation, leveraging first-principles calculations, we unveil a robust magnetoelectric coupling within multiferroic heterostructures (HSs) by ingeniously integrating a non-van der Waals (non-vdW) magnetic FeTiO3 monolayer with the ferroelectric (FE) Ga2O3. Diverging from conventional van der Waals (vdW) multiferroic HSs, the magnetic states of the FeTiO3 monolayer can be efficiently toggled between ferromagnetic (FM) and antiferromagnetic (AFM) configurations by reversing the polarization of the Ga2O3 monolayer. This intriguing phenomenon arises from polarization-dependent substantial interlayer electron transfers and the interplay between superexchange and direct-exchange magnetic couplings of the iron atoms. The carrier-mediated interfacial interactions induce crucial shifts in Fermi level positions, decisively imparting distinct electronic characteristics near the Fermi level of composite systems. These novel findings offer exciting prospects for the future of magnetoelectric technology.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FeTiO3/Ga2O3 非范德华异质结构中的稳健磁电耦合
磁电耦合是下一代电子技术的重大突破,它提供了通过电学手段实现非易失性磁控制的能力。在这项综合研究中,我们利用第一原理计算,通过巧妙地将非范德华(non-vdW)磁性 FeTiO3 单层与铁电(FE)Ga2O3 相结合,揭示了多铁素体异质结构(HS)中的稳健磁电耦合。与传统的范德华(vdW)多铁电性 HS 不同,通过扭转 Ga2O3 单层的极化,FeTiO3 单层的磁性状态可以在铁磁(FM)和反铁磁(AFM)构型之间有效切换。这一有趣的现象源于极化相关的大量层间电子转移以及铁原子的超交换和直接交换磁耦合之间的相互作用。载流子介导的界面相互作用引起了费米级位置的关键移动,决定性地赋予了复合系统费米级附近独特的电子特性。这些新发现为未来的磁电技术提供了令人振奋的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
期刊最新文献
Machine Learning Mapping Approach for Computing Spin Relaxation Dynamics Optimizing Formation Energy Barrier of NiCo-LDH Cocatalyst to Enhance Photoelectrochemical Benzyl Alcohol Oxidation Quantum Tunneling: History and Mystery of Large Amplitude Motions over a Century Stabilizing Diketopyrrolopyrrole Radical Cations Through Carbazoles: Substitution Pattern vs Spin Delocalization Machine Learning Prediction of the Corrosion Rate of Zinc-Based Alloys Containing Copper, Lithium, Magnesium, and Silver
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1