{"title":"POLD1 Is Required for Cell Cycle Progression by Overcoming DNA Damage in Malignant Pleural Mesothelioma.","authors":"Daiki Shimizu, Miku Ishibashi, Tadaaki Yamada, Yuki Toda, Shigekuni Hosogi, Eishi Ashihara","doi":"10.21873/cgp.20437","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aim: </strong>The prognosis of patients with malignant pleural mesothelioma (MPM) remains poor due to lack of effective therapeutic targets. DNA damage caused by long-time exposure to asbestos fibers has been associated with the development of MPM, with mutations at genes encoding DNA damage repair (DDR)-related molecules frequently expressed in patients with MPM. The present study was designed to identify novel therapeutic targets in MPM using large public databases, such as The Cancer Genome Atlas (TCGA) and Genotype Tissue Expression project (GTEx) focused on DDR pathways.</p><p><strong>Materials and methods: </strong>The correlations between mRNA expression levels of DDR-related genes and overall survival (OS) were analyzed in mesothelioma patients in TCGA mesothelioma (TCGA-MESO) datasets. The anti-tumor effects of small interfering RNAs (siRNA) against DDR-related genes associated with OS were subsequently tested in MPM cell lines.</p><p><strong>Results: </strong>High levels of mRNA encoding DNA polymerase delta 1, catalytic subunit (POLD1) were significantly associated with reduced OS in patients with MPM (p<0.001, Log-rank test). In addition, siRNA targeting POLD1 (siPOLD1) caused cell cycle arrest at the G<sub>1</sub>/S checkpoint and induced apoptosis involving accumulation of DNA damage in MPM cell lines.</p><p><strong>Conclusion: </strong>POLD1 plays essential roles in overcoming DNA damage and cell cycle progression at the G<sub>1</sub>/S checkpoint in MPM cells. These findings suggest that POLD1 may be a novel therapeutic target in MPM.</p>","PeriodicalId":9516,"journal":{"name":"Cancer Genomics & Proteomics","volume":"21 2","pages":"158-165"},"PeriodicalIF":2.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10905272/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Genomics & Proteomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21873/cgp.20437","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Background/aim: The prognosis of patients with malignant pleural mesothelioma (MPM) remains poor due to lack of effective therapeutic targets. DNA damage caused by long-time exposure to asbestos fibers has been associated with the development of MPM, with mutations at genes encoding DNA damage repair (DDR)-related molecules frequently expressed in patients with MPM. The present study was designed to identify novel therapeutic targets in MPM using large public databases, such as The Cancer Genome Atlas (TCGA) and Genotype Tissue Expression project (GTEx) focused on DDR pathways.
Materials and methods: The correlations between mRNA expression levels of DDR-related genes and overall survival (OS) were analyzed in mesothelioma patients in TCGA mesothelioma (TCGA-MESO) datasets. The anti-tumor effects of small interfering RNAs (siRNA) against DDR-related genes associated with OS were subsequently tested in MPM cell lines.
Results: High levels of mRNA encoding DNA polymerase delta 1, catalytic subunit (POLD1) were significantly associated with reduced OS in patients with MPM (p<0.001, Log-rank test). In addition, siRNA targeting POLD1 (siPOLD1) caused cell cycle arrest at the G1/S checkpoint and induced apoptosis involving accumulation of DNA damage in MPM cell lines.
Conclusion: POLD1 plays essential roles in overcoming DNA damage and cell cycle progression at the G1/S checkpoint in MPM cells. These findings suggest that POLD1 may be a novel therapeutic target in MPM.
期刊介绍:
Cancer Genomics & Proteomics (CGP) is an international peer-reviewed journal designed to publish rapidly high quality articles and reviews on the application of genomic and proteomic technology to basic, experimental and clinical cancer research. In this site you may find information concerning the editorial board, editorial policy, issue contents, subscriptions, submission of manuscripts and advertising. The first issue of CGP circulated in January 2004.
Cancer Genomics & Proteomics is a journal of the International Institute of Anticancer Research. From January 2013 CGP is converted to an online-only open access journal.
Cancer Genomics & Proteomics supports (a) the aims and the research projects of the INTERNATIONAL INSTITUTE OF ANTICANCER RESEARCH and (b) the organization of the INTERNATIONAL CONFERENCES OF ANTICANCER RESEARCH.