Searching for homozygous haplotype deficiency in Manech Tête Rousse dairy sheep revealed a nonsense variant in the MMUT gene affecting newborn lamb viability.
Maxime Ben Braiek, Carole Moreno-Romieux, Céline André, Jean-Michel Astruc, Philippe Bardou, Arnaud Bordes, Frédéric Debat, Francis Fidelle, Itsasne Granado-Tajada, Chris Hozé, Florence Plisson-Petit, François Rivemale, Julien Sarry, Némuel Tadi, Florent Woloszyn, Stéphane Fabre
{"title":"Searching for homozygous haplotype deficiency in Manech Tête Rousse dairy sheep revealed a nonsense variant in the MMUT gene affecting newborn lamb viability.","authors":"Maxime Ben Braiek, Carole Moreno-Romieux, Céline André, Jean-Michel Astruc, Philippe Bardou, Arnaud Bordes, Frédéric Debat, Francis Fidelle, Itsasne Granado-Tajada, Chris Hozé, Florence Plisson-Petit, François Rivemale, Julien Sarry, Némuel Tadi, Florent Woloszyn, Stéphane Fabre","doi":"10.1186/s12711-024-00886-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Recessive deleterious variants are known to segregate in livestock populations, as in humans, and some may be lethal in the homozygous state.</p><p><strong>Results: </strong>We used phased 50 k single nucleotide polymorphism (SNP) genotypes and pedigree data to scan the genome of 6845 Manech Tête Rousse dairy sheep to search for deficiency in homozygous haplotypes (DHH). Five Manech Tête Rousse deficient homozygous haplotypes (MTRDHH1 to 5) were identified, with a homozygous deficiency ranging from 84 to 100%. These haplotypes are located on Ovis aries chromosome (OAR)1 (MTRDHH2 and 3), OAR10 (MTRDHH4), OAR13 (MTRDHH5), and OAR20 (MTRDHH1), and have carrier frequencies ranging from 7.8 to 16.6%. When comparing at-risk matings between DHH carriers to safe matings between non-carriers, two DHH (MTRDHH1 and 2) were linked with decreased insemination success and/or increased stillbirth incidence. We investigated the MTRDHH1 haplotype, which substantially increased stillbirth rate, and identified a single nucleotide variant (SNV) inducing a premature stop codon (p.Gln409*) in the methylmalonyl-CoA mutase (MMUT) gene by using a whole-genome sequencing approach. We generated homozygous lambs for the MMUT mutation by at-risk mating between heterozygous carriers, and most of them died within the first 24 h after birth without any obvious clinical symptoms. Reverse transcriptase-qPCR and western blotting on post-mortem liver and kidney biological samples showed a decreased expression of MMUT mRNA in the liver and absence of a full-length MMUT protein in the mutant homozygous lambs.</p><p><strong>Conclusions: </strong>We identified five homozygous deficient haplotypes that are likely to harbor five independent deleterious recessive variants in sheep. One of these was detected in the MMUT gene, which is associated with lamb lethality in the homozygous state. A specific management of these haplotypes/variants in the MTR dairy sheep selection program would help enhance the overall fertility and lamb survival.</p>","PeriodicalId":55120,"journal":{"name":"Genetics Selection Evolution","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10905913/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics Selection Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12711-024-00886-7","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Recessive deleterious variants are known to segregate in livestock populations, as in humans, and some may be lethal in the homozygous state.
Results: We used phased 50 k single nucleotide polymorphism (SNP) genotypes and pedigree data to scan the genome of 6845 Manech Tête Rousse dairy sheep to search for deficiency in homozygous haplotypes (DHH). Five Manech Tête Rousse deficient homozygous haplotypes (MTRDHH1 to 5) were identified, with a homozygous deficiency ranging from 84 to 100%. These haplotypes are located on Ovis aries chromosome (OAR)1 (MTRDHH2 and 3), OAR10 (MTRDHH4), OAR13 (MTRDHH5), and OAR20 (MTRDHH1), and have carrier frequencies ranging from 7.8 to 16.6%. When comparing at-risk matings between DHH carriers to safe matings between non-carriers, two DHH (MTRDHH1 and 2) were linked with decreased insemination success and/or increased stillbirth incidence. We investigated the MTRDHH1 haplotype, which substantially increased stillbirth rate, and identified a single nucleotide variant (SNV) inducing a premature stop codon (p.Gln409*) in the methylmalonyl-CoA mutase (MMUT) gene by using a whole-genome sequencing approach. We generated homozygous lambs for the MMUT mutation by at-risk mating between heterozygous carriers, and most of them died within the first 24 h after birth without any obvious clinical symptoms. Reverse transcriptase-qPCR and western blotting on post-mortem liver and kidney biological samples showed a decreased expression of MMUT mRNA in the liver and absence of a full-length MMUT protein in the mutant homozygous lambs.
Conclusions: We identified five homozygous deficient haplotypes that are likely to harbor five independent deleterious recessive variants in sheep. One of these was detected in the MMUT gene, which is associated with lamb lethality in the homozygous state. A specific management of these haplotypes/variants in the MTR dairy sheep selection program would help enhance the overall fertility and lamb survival.
期刊介绍:
Genetics Selection Evolution invites basic, applied and methodological content that will aid the current understanding and the utilization of genetic variability in domestic animal species. Although the focus is on domestic animal species, research on other species is invited if it contributes to the understanding of the use of genetic variability in domestic animals. Genetics Selection Evolution publishes results from all levels of study, from the gene to the quantitative trait, from the individual to the population, the breed or the species. Contributions concerning both the biological approach, from molecular genetics to quantitative genetics, as well as the mathematical approach, from population genetics to statistics, are welcome. Specific areas of interest include but are not limited to: gene and QTL identification, mapping and characterization, analysis of new phenotypes, high-throughput SNP data analysis, functional genomics, cytogenetics, genetic diversity of populations and breeds, genetic evaluation, applied and experimental selection, genomic selection, selection efficiency, and statistical methodology for the genetic analysis of phenotypes with quantitative and mixed inheritance.