Bao Le, Xiaoyue Niu, Tim Brown, Jeffrey W Imai-Eaton
{"title":"Dynamic models augmented by hierarchical data: an application of estimating HIV epidemics at sub-national level.","authors":"Bao Le, Xiaoyue Niu, Tim Brown, Jeffrey W Imai-Eaton","doi":"10.1093/biostatistics/kxae003","DOIUrl":null,"url":null,"abstract":"<p><p>Dynamic models have been successfully used in producing estimates of HIV epidemics at the national level due to their epidemiological nature and their ability to estimate prevalence, incidence, and mortality rates simultaneously. Recently, HIV interventions and policies have required more information at sub-national levels to support local planning, decision-making and resource allocation. Unfortunately, many areas lack sufficient data for deriving stable and reliable results, and this is a critical technical barrier to more stratified estimates. One solution is to borrow information from other areas within the same country. However, directly assuming hierarchical structures within the HIV dynamic models is complicated and computationally time-consuming. In this article, we propose a simple and innovative way to incorporate hierarchical information into the dynamical systems by using auxiliary data. The proposed method efficiently uses information from multiple areas within each country without increasing the computational burden. As a result, the new model improves predictive ability and uncertainty assessment.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":"1049-1061"},"PeriodicalIF":1.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471966/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxae003","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Dynamic models have been successfully used in producing estimates of HIV epidemics at the national level due to their epidemiological nature and their ability to estimate prevalence, incidence, and mortality rates simultaneously. Recently, HIV interventions and policies have required more information at sub-national levels to support local planning, decision-making and resource allocation. Unfortunately, many areas lack sufficient data for deriving stable and reliable results, and this is a critical technical barrier to more stratified estimates. One solution is to borrow information from other areas within the same country. However, directly assuming hierarchical structures within the HIV dynamic models is complicated and computationally time-consuming. In this article, we propose a simple and innovative way to incorporate hierarchical information into the dynamical systems by using auxiliary data. The proposed method efficiently uses information from multiple areas within each country without increasing the computational burden. As a result, the new model improves predictive ability and uncertainty assessment.
动态模型具有流行病学性质,能够同时估算流行率、发病率和死亡率,因此已成功用于估算国家层面的艾滋病毒流行情况。最近,艾滋病干预措施和政策需要国家以下各级提供更多信息,以支持地方规划、决策和资源分配。遗憾的是,许多地区缺乏足够的数据来得出稳定可靠的结果,这是进行更多分层估算的关键技术障碍。解决办法之一是借用同一国家其他地区的信息。然而,在 HIV 动态模型中直接假设分层结构既复杂又耗费计算时间。在本文中,我们提出了一种简单而创新的方法,通过使用辅助数据将分层信息纳入动态系统。所提出的方法在不增加计算负担的情况下,有效地利用了每个国家内多个地区的信息。因此,新模型提高了预测能力和不确定性评估。
期刊介绍:
Among the important scientific developments of the 20th century is the explosive growth in statistical reasoning and methods for application to studies of human health. Examples include developments in likelihood methods for inference, epidemiologic statistics, clinical trials, survival analysis, and statistical genetics. Substantive problems in public health and biomedical research have fueled the development of statistical methods, which in turn have improved our ability to draw valid inferences from data. The objective of Biostatistics is to advance statistical science and its application to problems of human health and disease, with the ultimate goal of advancing the public''s health.