{"title":"Dynamic constitutive model of saturated saline frozen soil under uniaxial impact loading","authors":"Bin Shang, Zhiwu Zhu, Bin Li, Fulai Zhang, Tao Li","doi":"10.1177/10567895241234163","DOIUrl":null,"url":null,"abstract":"The soil matrix, salt crystals, ice crystals, and pore solutions constitute the composite geological material of saturated saline frozen soil. The destruction mode and dynamic constitutive model of saturated saline frozen soil need to be studied because infrastructure construction is increasingly being extended to regions with saturated saline frozen soil. Based on the split Hopkinson pressure bar device, uniaxial impact compression tests were conducted on frozen soil samples with different salt contents under different strain rates. The strain rate of saturated saline frozen soil must be emphasized based on the results. The gradient of the elastic segment and maximum stress of the soil are negatively correlated with the salt content increase. To further explore the failure mechanism, the study examined the damage and failure behavior of saturated saline frozen soil, along with the absorption energy in the failure process. According to the test results, the saturated saline frozen soil was similar to a particle-reinforced composite. Subsequently, the debonding damage of the ice–salt eutectic and the mechanical–chemical damage of the soil matrix were considered. The test results could be predicted accurately from the results of the model, verifying that the influences of the salt content and strain rate are reasonably considered by the constructed model.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"1 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Damage Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10567895241234163","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The soil matrix, salt crystals, ice crystals, and pore solutions constitute the composite geological material of saturated saline frozen soil. The destruction mode and dynamic constitutive model of saturated saline frozen soil need to be studied because infrastructure construction is increasingly being extended to regions with saturated saline frozen soil. Based on the split Hopkinson pressure bar device, uniaxial impact compression tests were conducted on frozen soil samples with different salt contents under different strain rates. The strain rate of saturated saline frozen soil must be emphasized based on the results. The gradient of the elastic segment and maximum stress of the soil are negatively correlated with the salt content increase. To further explore the failure mechanism, the study examined the damage and failure behavior of saturated saline frozen soil, along with the absorption energy in the failure process. According to the test results, the saturated saline frozen soil was similar to a particle-reinforced composite. Subsequently, the debonding damage of the ice–salt eutectic and the mechanical–chemical damage of the soil matrix were considered. The test results could be predicted accurately from the results of the model, verifying that the influences of the salt content and strain rate are reasonably considered by the constructed model.
期刊介绍:
Featuring original, peer-reviewed papers by leading specialists from around the world, the International Journal of Damage Mechanics covers new developments in the science and engineering of fracture and damage mechanics.
Devoted to the prompt publication of original papers reporting the results of experimental or theoretical work on any aspect of research in the mechanics of fracture and damage assessment, the journal provides an effective mechanism to disseminate information not only within the research community but also between the reseach laboratory and industrial design department.
The journal also promotes and contributes to development of the concept of damage mechanics. This journal is a member of the Committee on Publication Ethics (COPE).