{"title":"Recursive Sentiment Detection Algorithm for Russian Sentences","authors":"A. Y. Poletaev, I. V. Paramonov","doi":"10.3103/S0146411623070118","DOIUrl":null,"url":null,"abstract":"<p>The article is devoted to the task of sentiment detection of Russian sentences. The sentiment is conceived as the author’s attitude to the topic of a sentence. This assay considers positive, neutral, and negative sentiment classes, i.e., the task of three-classes classification is solved. The article introduces a rule-based sentiment detection algorithm for Russian sentences. The algorithm is based on the assumption that the sentiment of a phrase can be determined by the sentiments of its parts by the recursive application of appropriate semantic rules to the sentiments of its parts organized as a constituency parse tree. The utilized set of semantic rules was constructed based on a discussion with experts in linguistics. The experiments showed that the proposed recursive algorithm performs slightly worse on the hotel reviews corpus than the adapted rule-based approach: weighted F1-measures are 0.75 and 0.78, respectively. To measure the algorithm efficiency on complex sentences, we created OpenSentimentCorpus based on OpenCorpora, an open corpus of sentences extracted from Russian news and periodicals. On OpenSentimentCorpus the recursive algorithm performs be.er than the adapted approach does: F1-measures are 0.70 and 0.63, respectively. This indicates that the proposed algorithm has an advantage in case of more complex sentences with more subtle ways of expressing the sentiment.</p>","PeriodicalId":46238,"journal":{"name":"AUTOMATIC CONTROL AND COMPUTER SCIENCES","volume":"57 7","pages":"740 - 749"},"PeriodicalIF":0.6000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AUTOMATIC CONTROL AND COMPUTER SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S0146411623070118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The article is devoted to the task of sentiment detection of Russian sentences. The sentiment is conceived as the author’s attitude to the topic of a sentence. This assay considers positive, neutral, and negative sentiment classes, i.e., the task of three-classes classification is solved. The article introduces a rule-based sentiment detection algorithm for Russian sentences. The algorithm is based on the assumption that the sentiment of a phrase can be determined by the sentiments of its parts by the recursive application of appropriate semantic rules to the sentiments of its parts organized as a constituency parse tree. The utilized set of semantic rules was constructed based on a discussion with experts in linguistics. The experiments showed that the proposed recursive algorithm performs slightly worse on the hotel reviews corpus than the adapted rule-based approach: weighted F1-measures are 0.75 and 0.78, respectively. To measure the algorithm efficiency on complex sentences, we created OpenSentimentCorpus based on OpenCorpora, an open corpus of sentences extracted from Russian news and periodicals. On OpenSentimentCorpus the recursive algorithm performs be.er than the adapted approach does: F1-measures are 0.70 and 0.63, respectively. This indicates that the proposed algorithm has an advantage in case of more complex sentences with more subtle ways of expressing the sentiment.
期刊介绍:
Automatic Control and Computer Sciences is a peer reviewed journal that publishes articles on• Control systems, cyber-physical system, real-time systems, robotics, smart sensors, embedded intelligence • Network information technologies, information security, statistical methods of data processing, distributed artificial intelligence, complex systems modeling, knowledge representation, processing and management • Signal and image processing, machine learning, machine perception, computer vision