Efficient drift parameter estimation for ergodic solutions of backward SDEs

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY Scandinavian Journal of Statistics Pub Date : 2024-02-27 DOI:10.1111/sjos.12709
Teppei Ogihara, Mitja Stadje
{"title":"Efficient drift parameter estimation for ergodic solutions of backward SDEs","authors":"Teppei Ogihara, Mitja Stadje","doi":"10.1111/sjos.12709","DOIUrl":null,"url":null,"abstract":"We derive consistency and asymptotic normality results for quasi-maximum likelihood methods for drift parameters of ergodic stochastic processes observed in discrete time in an underlying continuous-time setting. The special feature of our analysis is that the stochastic integral part is unobserved and nonparametric. Additionally, the drift may depend on the (unknown and unobserved) stochastic integrand. Our results hold for ergodic semi-parametric diffusions and backward SDEs. Simulation studies confirm that the methods proposed yield good convergence results.","PeriodicalId":49567,"journal":{"name":"Scandinavian Journal of Statistics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/sjos.12709","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We derive consistency and asymptotic normality results for quasi-maximum likelihood methods for drift parameters of ergodic stochastic processes observed in discrete time in an underlying continuous-time setting. The special feature of our analysis is that the stochastic integral part is unobserved and nonparametric. Additionally, the drift may depend on the (unknown and unobserved) stochastic integrand. Our results hold for ergodic semi-parametric diffusions and backward SDEs. Simulation studies confirm that the methods proposed yield good convergence results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
后向 SDE 的遍历解的高效漂移参数估计
我们推导了在连续时间背景下,离散时间观测到的遍历随机过程漂移参数的准极大似然法的一致性和渐近正态性结果。我们分析的特点是随机积分部分是非观测和非参数的。此外,漂移可能取决于(未知且无法观测的)随机积分。我们的结果适用于遍历半参数扩散和后向 SDE。模拟研究证实,所提出的方法具有良好的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Scandinavian Journal of Statistics
Scandinavian Journal of Statistics 数学-统计学与概率论
CiteScore
1.80
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The Scandinavian Journal of Statistics is internationally recognised as one of the leading statistical journals in the world. It was founded in 1974 by four Scandinavian statistical societies. Today more than eighty per cent of the manuscripts are submitted from outside Scandinavia. It is an international journal devoted to reporting significant and innovative original contributions to statistical methodology, both theory and applications. The journal specializes in statistical modelling showing particular appreciation of the underlying substantive research problems. The emergence of specialized methods for analysing longitudinal and spatial data is just one example of an area of important methodological development in which the Scandinavian Journal of Statistics has a particular niche.
期刊最新文献
Model‐based clustering in simple hypergraphs through a stochastic blockmodel Some approximations to the path formula for some nonlinear models Tobit models for count time series On some publications of Sir David Cox Looking back: Selected contributions by C. R. Rao to multivariate analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1