{"title":"Computer Simulation of Charge Carrier Transport Processes in the Conducting Layers of Colloidal Quantum Dots","authors":"A. V. Nevidimov","doi":"10.1134/s0018143923090114","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A quadratic dependence of the charge diffusion coefficient on the diameter of colloidal quantum dots (CQDs) has been established. The charge diffusion coefficient is shown to depend weakly on the polydispersity of a sample. It has been determined that a decrease in the root-mean-square displacement of a charge carrier is an exponential function of the thickness of a ligand shell and the relative fraction of particles that can become charge traps. An explanation has been proposed for the exponential dependence of the conductivity of PbS CQD layers on the CQD size, which consists in a decrease in the fraction of CQDs acting as charge carrier traps.</p>","PeriodicalId":12893,"journal":{"name":"High Energy Chemistry","volume":"127 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1134/s0018143923090114","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A quadratic dependence of the charge diffusion coefficient on the diameter of colloidal quantum dots (CQDs) has been established. The charge diffusion coefficient is shown to depend weakly on the polydispersity of a sample. It has been determined that a decrease in the root-mean-square displacement of a charge carrier is an exponential function of the thickness of a ligand shell and the relative fraction of particles that can become charge traps. An explanation has been proposed for the exponential dependence of the conductivity of PbS CQD layers on the CQD size, which consists in a decrease in the fraction of CQDs acting as charge carrier traps.
期刊介绍:
High Energy Chemistry publishes original articles, reviews, and short communications on molecular and supramolecular photochemistry, photobiology, radiation chemistry, plasma chemistry, chemistry of nanosized systems, chemistry of new atoms, processes and materials for optical information systems and other areas of high energy chemistry. It publishes theoretical and experimental studies in all areas of high energy chemistry, such as the interaction of high-energy particles with matter, the nature and reactivity of short-lived species induced by the action of particle and electromagnetic radiation or hot atoms on substances in their gaseous and condensed states, and chemical processes initiated in organic and inorganic systems by high-energy radiation.