{"title":"Gamma/Hadron Separation Method for the HADAR Experiment","authors":"Yang-Zhao Ren, Tian-Lu Chen, You-Liang Feng, Dan-Zeng Luo-Bu, Yi-Qing Guo, Cheng Liu, Qi Gao, Mao-Yuan Liu, Xiang-Li Qian, Ya-Ping Wang, Zi-Hao Zhang, Xin-Long Li, Qing-Yuan Hou, Heng-Jiao Liu, Qing-Qian Zhou, Shan-Jie Shu","doi":"10.1088/1674-4527/ad23cc","DOIUrl":null,"url":null,"abstract":"Ground-based arrays of imaging atmospheric Cherenkov telescopes (IACTs) are the most sensitive <italic toggle=\"yes\">γ</italic>-ray detectors for energies of approximately 100 GeV and above. One such IACT is the High Altitude Detection of Astronomical Radiation (HADAR) experiment, which uses a large aperture refractive water lens system to capture atmospheric Cherenkov photons (i.e., the imaging atmospheric Cherenkov technique). The telescope array has a low threshold energy and large field of view, and can continuously scan the area of the sky being observed, which is conducive to monitoring and promptly responding to transient phenomena. The process of <italic toggle=\"yes\">γ</italic>-hadron separation is essential in very-high-energy (>30 GeV) <italic toggle=\"yes\">γ</italic>-ray astronomy and is a key factor for the successful utilization of IACTs. In this study, Monte Carlo simulations were carried out to model the response of cosmic rays within the HADAR detectors. By analyzing the Hillas parameters and the distance between the event core and the telescope, the distinction between air showers initiated by <italic toggle=\"yes\">γ</italic>-rays and those initiated by cosmic rays was determined. Additionally, a Quality Factor was introduced to assess the telescope’s ability to suppress the background and to provide a more effective characterization of its performance.","PeriodicalId":54494,"journal":{"name":"Research in Astronomy and Astrophysics","volume":"12 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Astronomy and Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-4527/ad23cc","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Ground-based arrays of imaging atmospheric Cherenkov telescopes (IACTs) are the most sensitive γ-ray detectors for energies of approximately 100 GeV and above. One such IACT is the High Altitude Detection of Astronomical Radiation (HADAR) experiment, which uses a large aperture refractive water lens system to capture atmospheric Cherenkov photons (i.e., the imaging atmospheric Cherenkov technique). The telescope array has a low threshold energy and large field of view, and can continuously scan the area of the sky being observed, which is conducive to monitoring and promptly responding to transient phenomena. The process of γ-hadron separation is essential in very-high-energy (>30 GeV) γ-ray astronomy and is a key factor for the successful utilization of IACTs. In this study, Monte Carlo simulations were carried out to model the response of cosmic rays within the HADAR detectors. By analyzing the Hillas parameters and the distance between the event core and the telescope, the distinction between air showers initiated by γ-rays and those initiated by cosmic rays was determined. Additionally, a Quality Factor was introduced to assess the telescope’s ability to suppress the background and to provide a more effective characterization of its performance.
期刊介绍:
Research in Astronomy and Astrophysics (RAA) is an international journal publishing original research papers and reviews across all branches of astronomy and astrophysics, with a particular interest in the following topics:
-large-scale structure of universe formation and evolution of galaxies-
high-energy and cataclysmic processes in astrophysics-
formation and evolution of stars-
astrogeodynamics-
solar magnetic activity and heliogeospace environments-
dynamics of celestial bodies in the solar system and artificial bodies-
space observation and exploration-
new astronomical techniques and methods