The Role of PbO2 in the Metal Lead Recovery from Lead Paste Via Suspension Electrolysis with Sulfuric Acid as Electrolyte

IF 2.5 3区 材料科学 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Journal of Sustainable Metallurgy Pub Date : 2024-02-29 DOI:10.1007/s40831-024-00796-4
Zihan Su, Lixin Zhao, Sen Xie, Songyan Qin
{"title":"The Role of PbO2 in the Metal Lead Recovery from Lead Paste Via Suspension Electrolysis with Sulfuric Acid as Electrolyte","authors":"Zihan Su, Lixin Zhao, Sen Xie, Songyan Qin","doi":"10.1007/s40831-024-00796-4","DOIUrl":null,"url":null,"abstract":"<p>The suspension electrolysis system using sulfuric acid as the electrolyte (SE II system) provides a zero-emission strategy to recover high-purity lead from lead paste. It realized one-step lead recovery without desulfurization pre-treatment process. The dilemma of SE II system for lead past recovery is the difficulty of its main component poor conductive PbSO<sub>4</sub> reduction. PbSO<sub>4</sub> reduction with the help of PbO<sub>2</sub> is worthy to explore as PbO<sub>2</sub> is the second component and is good-conductive. In this study, through exploring the PbO<sub>2</sub> transformation process in SE II system, it is found that PbO<sub>2</sub> was firstly reduced to regular cubic structured newborn PbSO<sub>4</sub> crystals, and later to metal Pb with 94.12% purity. The PbO<sub>2</sub> and its reduction products were deposited and grown on the cathode plate to form an amorphous skeleton. The electrolysis experiment of lead paste in SE II system showed that the three-dimensional skeleton structure could wrap the raw PbSO<sub>4</sub> in the lead paste and then further reduce it to metal lead. The lead recovery rate was 86.26% with a purity of 97.45% Pb. The role of PbO<sub>2</sub> in the lead paste in the SE II system was deeply understood, which is helpful to enhance suspension electrolysis efficiency for the lead paste resource utilization in the future.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"77 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40831-024-00796-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The suspension electrolysis system using sulfuric acid as the electrolyte (SE II system) provides a zero-emission strategy to recover high-purity lead from lead paste. It realized one-step lead recovery without desulfurization pre-treatment process. The dilemma of SE II system for lead past recovery is the difficulty of its main component poor conductive PbSO4 reduction. PbSO4 reduction with the help of PbO2 is worthy to explore as PbO2 is the second component and is good-conductive. In this study, through exploring the PbO2 transformation process in SE II system, it is found that PbO2 was firstly reduced to regular cubic structured newborn PbSO4 crystals, and later to metal Pb with 94.12% purity. The PbO2 and its reduction products were deposited and grown on the cathode plate to form an amorphous skeleton. The electrolysis experiment of lead paste in SE II system showed that the three-dimensional skeleton structure could wrap the raw PbSO4 in the lead paste and then further reduce it to metal lead. The lead recovery rate was 86.26% with a purity of 97.45% Pb. The role of PbO2 in the lead paste in the SE II system was deeply understood, which is helpful to enhance suspension electrolysis efficiency for the lead paste resource utilization in the future.

Graphical Abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PbO2 在以硫酸为电解质通过悬浮电解从铅膏中回收金属铅中的作用
以硫酸为电解质的悬浮电解系统(SE II 系统)为从铅膏中回收高纯度铅提供了一种零排放策略。它实现了一步法铅回收,无需脱硫预处理过程。SE II 系统在铅膏回收方面的难题在于其主要成分 PbSO4 的还原导电性较差。由于 PbO2 是第二组分且导电性好,因此借助 PbO2 还原 PbSO4 的方法值得探讨。本研究通过探索 PbO2 在 SE II 体系中的转化过程,发现 PbO2 首先被还原成规则立方结构的新生 PbSO4 晶体,随后被还原成纯度为 94.12% 的金属铅。PbO2 及其还原产物在阴极板上沉积生长,形成无定形骨架。铅膏在 SE II 系统中的电解实验表明,三维骨架结构可将原 PbSO4 包裹在铅膏中,然后进一步还原成金属铅。铅的回收率为 86.26%,铅的纯度为 97.45%。深入了解了铅膏中的 PbO2 在 SE II 系统中的作用,有助于提高悬浮电解效率,促进铅膏资源化利用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Sustainable Metallurgy
Journal of Sustainable Metallurgy Materials Science-Metals and Alloys
CiteScore
4.00
自引率
12.50%
发文量
151
期刊介绍: Journal of Sustainable Metallurgy is dedicated to presenting metallurgical processes and related research aimed at improving the sustainability of metal-producing industries, with a particular emphasis on materials recovery, reuse, and recycling. Its editorial scope encompasses new techniques, as well as optimization of existing processes, including utilization, treatment, and management of metallurgically generated residues. Articles on non-technical barriers and drivers that can affect sustainability will also be considered.
期刊最新文献
Iron Chloride Vapor Treatment for Leaching Platinum Group Metals from Spent Catalysts Environmentally Friendly Separating of Fine Copper Particles from Lithium Iron Phosphate and Graphite by Centrifugal Gravity Concentration Emerging Electrochemical Techniques for Recycling Spent Lead Paste in Lead-Acid Batteries A New Approach of Pelletizing: Use of Low-Grade Ore as a Potential Raw Material Eco-Friendly and Efficient Alumina Recovery from Coal Fly Ash by Employing the CaO as an Additive During the Vacuum Carbothermic Reduction and Alkali Dissolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1